背包基础

一、0-1背包
1.题目:
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
2.特点:
每种物品仅有一件,可以选择放或不放
3.f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
4.只考虑第i件物品的策略(放或不放),可以转化为一个只牵扯前i-1件物品的问题,有以下两种i情况:
(1)前i-1件物品放入容量为v的背包中,价值为f[i-1][v],不放入第i个;
(2)前i-1件物品放入剩下的容量为v-c[i]的背包中”,最大价值就是f[i-1][v-c[i]]+w[i],第i个放入背包。
伪码为:

for(i=1;i<=N ;i++)
   for( v=V;v>=c[i];v--) 
    f[v]=max{f[v],f[v-c[i]]+w[i]}; 

二.完全背包
1.题目 :
有N种物品和一个容量为V的背包,每种物品都有无数个。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
2.简化:
简单优化:若两件物品i、j满足c[i]<=c[j] 并且w[i]>=w[j],则将物品j去掉;将费用大于V的物品去掉 .
转化为01背包:考虑到第i种物品最多选V/c[i]件,于是可以把第i种物品转化为V/c[i]件费用及价值均不变的物品,然后求解这个01背包问题
伪码:

for( i=1;i<=N ;i++)
   for (v=0;v<=V ;v++)
    f[v]=max{f[v],f[v-cost]+weight} 

3.f[i][v]只与f[i-1][v]和f[i][v-c[i]]+w[i]有关:
考虑f[i][v]时,由于是从前往后写,一维数组表示的f[v]还没被写入,它表示的是f[i-1][v],而f[v-c[i]]已经被写入,它表示的是f[i][v-c[i]]一维的f[v]=max{f[v],f[v-c[i]]+w[i]}表示的恰好是二维的f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]};

三.多重背包
1.题目:
有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大 。
2.优化:
用二进制思想。对于每一个十进制n都可以转化为2^k的和;然后将每一个不同次数的2的幂看作01背包的每一个物品就可以按照01背包的思想做了。

四.分组的背包问题
1.题目:
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
2.算法:
这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是一件都不选(包含有两个01背包问题,即对于一个类,是选还是不选;选择这一类中的哪一个的问题)。也就是说设f[k][v]表示前k组物品花费费用v能取得的最大权值
状态方程:
f[k][v]=max{f[k-1][v],f[k-1][v-c[i]]+w[i]|物品i属于组k}
3.伪码:

伪码:
  for 所有的组k
   for v=V..0
    for 所有的i属于组k
     f[v]=max{f[v],f[v-c[i]]+w[i]};//“for v=V..0”这一层循环必须在“for 所有的i属于组k”之外。这样才能保证每一组内最多有一个被使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值