题解:SDOI2015 约数个数和 【莫比乌斯反演】

这篇博客详细介绍了如何利用莫比乌斯反演解决数论问题,具体讨论了求解i=1到n,j=1到m,i和j的公约数个数和的问题,通过变换求和顺序和应用莫比乌斯函数,最终得出复杂度为n的解决方案。
摘要由CSDN通过智能技术生成

求 ∑ i = 1 n ∑ j = 1 m d ( i j ) [ d ( x ) 表 示 x 的 约 数 个 数 ] 求\sum_{i=1}^n\sum_{j=1}^m d(ij) [d(x)表示x的约数个数] i=1nj=1md(ij)[d(x)x]
首 先 , 我 们 要 知 道 如 何 去 求 d ( i j ) , 有 这 么 一 个 式 子 首先,我们要知道如何去求d(ij),有这么一个式子 d(ij)

d ( i j ) = ∑ x ∣ i ∑ y ∣ j [ g c d ( i , j ) = = 1 ] d(ij)=\sum_{x|i}\sum_{y|j}[gcd(i,j)==1] d(ij)=xiyj[gcd(i,j)==1]
于 是 , 我 们 的 式 子 就 变 成 了 要 求 ∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j [ g c d ( i , j ) = = 1 ] 于是,我们的式子就变成了要求\sum_{i=1}^n\sum_{j=1}^m\sum_{x|i}\sum_{y|j}[gcd(i,j)==1] i=1nj=1mxiyj[gcd(i,j)==1]
改 变 求 和 顺 序 , 先 枚 举 因 数 x 和 y 改变求和顺序,先枚举因数 x 和 y xy

于 是 我 们 得 到 了 ∑ x = 1 n ∑ y = 1 m ⌊ n x ⌋ ⌊ m y ⌋ [ g c d ( x , y ) = = 1 ] 于是我们得到了\sum_{x=1}^n\sum_{y=1}^m \lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor[gcd(x,y)==1] x=1ny=1mxnym[gcd(x,y)==1]
到了这一步,我们就可以开始上莫比乌斯反演了

设 f ( x ) = ∑ i = 1 n ∑ j = 1 m ⌊ n i ⌋ ⌊ m j ⌋ [ g c d ( i , j ) = = x ] 设f(x)=\sum_{i=1}^n\sum_{j=1}^m \lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{j}\rfloor[gcd(i,j)==x] f(x)=i=1nj=1minjm[gcd(i,j)==x]

g ( n ) = ∑ n ∣ d f ( d ) g(n)=\sum_{n|d}f(d) g(n)=ndf(d)
于 是 g ( x ) = ∑ i = 1 n ∑ j = 1 m ⌊ n i ⌋ ⌊ m j ⌋ [ x ∣ g c d ( i , j ) ] 于是g(x)=\sum_{i=1}^n\sum_{j=1}^m \lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{j}\rfloor[x|gcd(i,j)] g(x)=i=1nj=1minjm[xgcd(i,j)]

同 样 我 们 把 x 提 出 来 消 除 g c d , 于 是 我 们 得 到 同样我们把x提出来消除gcd,于是我们得到 xgcd

g ( x ) = ∑ i = 1 ⌊ n x ⌋ ∑ j = 1 ⌊ m x ⌋ ⌊ n i x ⌋ ⌊ m j x ⌋ g(x)=\sum_{i=1}^{\lfloor\frac{n}{x}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{x}\rfloor} \lfloor\frac{n}{ix}\rfloor\lfloor\frac{m}{jx}\rfloor g(x)=i=1xnj=1xmixnjxm
把 g ( x ) 带 回 原 来 的 式 子 把g(x)带回原来的式子 g(x)

f ( n ) = ∑ n ∣ d g ( d ) μ ( d n ) f(n)=\sum_{n|d}g(d)\mu\left(\frac{d}{n}\right) f(n)=ndg(d)μ(nd)
f ( 1 ) = ∑ 1 ∣ d g ( d ) μ ( d ) = ∑ d = 1 m i n ( n , m ) μ ( d ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ ⌊ n i d ⌋ ⌊ m j d ⌋ f(1)=\sum_{1|d}g(d)\mu\left(d\right)=\sum_{d=1}^{min(n,m)}\mu({d})\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor} \lfloor\frac{n}{id}\rfloor\lfloor\frac{m}{jd}\rfloor f(1)=1dg(d)μ(d)=d=1min(n,m)μ(d)i=1dnj=1dmidnjdm
到 了 这 一 步 之 后 我 们 发 现 , 由 于 ⌊ n i d ⌋ 和 枚 举 y 没 什 么 关 系 , 于 是 又 可 以 把 它 提 前 到了这一步之后我们发现,由于 \lfloor\frac{n}{id}\rfloor和枚举y没什么关系,于是又可以把它提前 idny

∑ d = 1 m i n ( n , m ) μ ( d ) ∑ i = 1 ⌊ n d ⌋ ⌊ n i d ⌋ ∑ j = 1 ⌊ m d ⌋ ⌊ m j d ⌋ \sum_{d=1}^{min(n,m)}\mu({d})\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} \lfloor\frac{n}{id}\rfloor\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{m}{jd}\rfloor d=1min(n,m)μ(d)i=1dnidnj=1dmjdm
这 个 复 杂 的 长 的 很 的 式 子 看 得 十 分 难 受 , 于 是 我 们 就 记 这个复杂的长的很的式子看得十分难受,于是我们就记

p = ⌊ n i d ⌋ , q = ⌊ m j d ⌋ p=\lfloor\frac{n}{id}\rfloor,q=\lfloor\frac{m}{jd}\rfloor p=idnq=jdm

于 是 两 个 就 是 很 明 显 的 数 论 分 块 了 , 算 出 来 之 后 再 合 并 起 来 于是两个就是很明显的数论分块了,算出来之后再合并起来
A n s = ∑ d = 1 m i n ( n , m ) μ ( d ) ∗ p ∗ q Ans=\sum_{d=1}^{min(n,m)}\mu({d})*p*q Ans=d=1min(n,m)μ(d)pq

到这里,就完全推完了,整个的复杂度就是 n ∗ n = n \sqrt{n}*\sqrt{n}=n n n =n

于是上一波代码

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
#define re register
#define gc getchar()
#define ll long long
inline int read()
{
	re int x(0); re char ch(gc);
	while(ch>'9'||ch<'0') ch=gc;
	while(ch>='0'&&ch<='9') x=(x*10)+(ch^48),ch=gc;
	return x;
}
const int N=5e4+10;
int mu[N],pri[N],f[N],vis[N],cnt;
void get_mu(int n)	//线性筛求mu函数
{
	mu[1]=1;
	n-=5;
	for(int i=2;i<=n;++i)
	{
		if(!vis[i])
			mu[i]=-1,pri[++cnt]=i;
		for(int j=1;j<=cnt&&i*pri[j]<=n;++j)
		{
			vis[i*pri[j]]=1;
			if(i%pri[j]==0) 
			{
				mu[i*pri[j]]=0;
				break;
			}
			else 
				mu[i*pri[j]]=-mu[i];
		}
	}
	for(int i=1;i<=n;++i)
		mu[i]+=mu[i-1];
	for(int x=1;x<=n;++x)
	{
		ll res=0;
        for(int l=1,r;l<=x;l=r+1) 
			r=x/(x/l),res+=1LL*(r-l+1)*(x/l);
		f[x]=res;
	}
}
void work()
{
	int a=read(),b=read();
	int n=min(a,b);
	ll ans=0;
	for(int l=1,r;l<=n;l=r+1)	//数论分块优化
	{
		r=min(a/(a/l),b/(b/l));
        ans+=1LL*(mu[r]-mu[l-1])*f[a/l]*f[b/l];
	}
	cout<<ans<<endl;
}
int main()
{
	int T=read();
	get_mu(N);
	while(T--) work();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值