1、简介
-
T检验
T检验是针对连续变量的统计推断方法中最基本的检验方法。 -
样本量较大时
样本量较大时,由中心极限定理可知样本均数的抽样分布仍然是正态的,很少去考虑T检验的适用条件。 -
样本量较小时
当样本例数n较小时,一般要求样本取自正态总体。 -
单样本T检验
利用来自某总体的样本数据,推断该总体的均值是否与指定的检验值之间存在显著性差异。
2、上例子
如题:某药物在某种溶剂中溶解后的标准浓度为20.00mg/L。现采用某种方法,测量该药物溶解液11次,测量后得到的结果见例
问:用该方法测量所得结果是否与标准浓度值有所不同?
- 描述性分析
from scipy import stats as ss
import pyreadstat as pds
import pandas as pd
# 版本编码原因pd.read_spss读取sav报错,就换成pds了
df1, _ = pds.read_sav(r'medicine.sav',encoding='gbk')
df1.describe().T
可以看出这11份样本的均值为20.98,比标准浓度高。
- 正态性检验
# 正态性检验
stats.shapiro(df1['浓度'])
p值0.124>0.05,样本符合正态分布。
- 单样本T检验
# 单样本T检验
stats.ttest_1samp(df1['浓度'],20.00)
所示为单样本T检验的结果,结果显示统计量t=3.056,P值=0.012<0.05,因此认为用该方法测量所得结果与标准浓度值有差异