写在前面
- • AI 能控制我们家小爱同学天猫精灵吗?
- • AI 的惊人潜力是否正在被不可控的风险吞噬?
- • 如何让 AI 从"令人不安的未知"转变为"可靠的生产力工具"?
- • 企业如何在 AI 的惊艳与焦虑中找到平衡点?
这些问题不仅困扰着每一个接触 AI 的人,更是企业在 AI 转型过程中必须面对的挑战。本文将通过解析 Coze 的大语言模型编排系统,揭示如何在保持 AI 创新活力的同时,实现企业级的精准掌控。从技术创新到落地实践,为企业 AI 应用提供一个可持续发展的新思路。
前言:失控困境下的希望
失控困局
AI 能力爆发带来的双重感受:惊艳与焦虑
2022 年底, ChatGPT 横空出世, 将 AI 带入了一个新纪元。短短一年多时间, 我们见证了 AI 能力的指数级提升:
- • 理解上: 从简单对话到复杂推理
- • 创作上: 从基础写作到跨模态创作
- • 专业上: 从通用知识到垂直领域精通
然而, 在这令人惊叹的发展背后, 企业用户却体会到了越来越强的焦虑感。某位企业 AI 负责人这样描述:"就像骑在一匹越来越强壮的野马上, 它能带你跑得更快, 但你却越来越难以控制它的方向。"
帮我写一篇爆款小红书文案。
企业应用中的典型困境:不可预期性
企业AI应用的困境
这种不可预期性主要表现在三个层面:
详细说明 | |
输入的不确定 | 同样的提示词, 不同时间得到不同结果 相似的任务, 质量表现差异巨大 无法保证企业所需的标准化输出 |
流程的不可控 | AI 难以理解企业特定规则 知识更新无法及时同步 与现有系统难以协同 |
效果的不稳定 | 简单任务: 效率提升但需要大量审核 复杂任务: 能力提升但错误率不稳定 规模应用: 效果与成本难以预测 |
AI 的创意和泛化能力,对于个人场景来说,大多数情况下是可以被接纳的,甚至是好事。但是在企业环境中,不可控意味着产出失去了优化和复盘的机会。产品品质也就无法得到保障!
那如何做呢?来看看 Coze 是如何做的!
Coze 平台带来的启示:AI 也可以被驯服
coze工作流
就在企业普遍感到困惑的时候, Coze 平台带来了一个重要启示:AI 应用不应该是一场赌博, 而应该是一个可控的工程。通过:
要素 | 细分说明 |
能力的边界管理 | - 明确定义 AI 能做什么,不能做什么 - 建立清晰的权限和约束体系 |
流程的可控设计 | - 将 AI 能力模块化 - 实现精确的流程编排 |
结果的可预期性 | - 标准化的输出管理 - 可靠的质量控制 |
这就像是将一匹野马驯化成了一辆汽车。虽然可能失去了一些"惊艳"的表现, 但获得了对于企业来说更重要的东西:可靠性与可控性。
真正的价值不在于 AI 有多强大, 而在于你能在多大程度上驾驭它。
本文将深入探讨如何通过 Coze 平台重获对 AI 的掌控, 让 AI 真正成为企业可靠的生产力工具。
第一章:认清困境 - AI 不可控的本质
让我们从一个简单的实验开始。
向 AI 提出同一个任务:
写一篇咖啡机测评的文章,重点关注用户体验,800字
第一次 | 第二次 | 第三次 |
|
|
![]() |
在短短 10 分钟内,我们得到了三个完全不同的结果:
- • 版本 A:从专业角度深入分析技术参数
- • 版本 B:以轻松口吻分享个人使用感受
- • 版本 C:从商业视角对比多个品牌
这个看似简单的实验,实际上揭示了 AI 应用中最本质的问题:不可预期性。接下来我看看为什么有这样的不可控性,然后再来看看如何应对!
一、提示词的局限性
1. 相同提示词,不同结果的现象
相同提示词不同结果
从图中我们可以看出来,面对我们的意图,AI 会有不同的理解,不断的泛化。我们遇到很多有技术背景的人在理解 AI 的时候,都会套用数据库的理念,想着能匹配数据库中的信息。但是 AI 在技术实现上有很大的不同。总的来说,这种不一致性主要表现在三个层面:
挑战 | 具体表现 |
内容差异 | - 关注点不同: 同样的主题,选择的切入角度各异 - 结构不同: 即使是规定了字数,段落组织也大不相同 - 风格迥异: 从专业到轻松,从深入到表层 |
质量波动 | - 深度波动: 有时深入专业,有时流于表面 - 逻辑波动: 有时逻辑严密,有时前后矛盾 - 数据波动: 有时数据准确,有时张冠李戴 |
一致性缺失 | - 概念一致性缺失: 同一概念的不同表述 - 数据一致性缺失: 相同数据的不同解 |