【全方位解析】企业如何通过提示词工程优化AI输出,提升市场竞争力—慢慢学AI045

写在前面

  • 幼稚的”Hello World”式提示词早该入土,却仍被奉为圭臬,可笑至极。
  • 思维链(CoT)终于让 AI 学会了思考,可惜人类还没学会。
  • 思维树(ToT)探索多种可能,但大多数人连树都分不清。
  • 高级框架如 AoT、SoT 是撬动 AI 的杠杆,可惜多数人连杠杆都不会用。
  • 如果你还在用简单提示词,那么恭喜,你已经正式落伍了。

引言 :AI 时代的关键技能 - 提示词工程

在人工智能迅速发展的今天,提示词工程已成为企业领导者必须掌握的关键技能。简而言之,提示词工程是设计和优化输入到 AI 系统的指令(即提示词)的艺术和科学。它就像是与 AI 对话的语言,通过精心设计的提示,我们可以引导 AI 生成更加准确、相关和有用的输出。 

简单来说,通过日常使用的自然语言和 AI 交流,就是所谓提示词工程(Prompt Engineering)。
也就是所谓 ChatBot,对话方式交流,看似没有门槛,如何组织语言,从而更好和 AI 交互,确是一件非常有挑战的事。

提示词的局限性

然而,随着企业面临的挑战日益复杂,简单的提示词往往无法满足需求。例如,当我们要求 AI “分析我们的市场状况” 时,可能得到的只是一些浅显的观察。 

 

图片

这是非常典型的,一个敢问,一个敢说。

这种简单提示无法充分利用 AI 的潜力,也无法应对复杂的商业问题。正是这种局限性推动了更先进提示技巧的发展,如思维链(Chain of Thought, CoT)、思维树(Tree of Thoughts, ToT)和思维图(Graph of Thoughts, GoT)等。这些高级技巧能够引导 AI 进行更深入的分析、探索多种可能性,并处理复杂的推理任务。 

在接下来的内容中,我们将深入探讨这些先进的提示词工程技巧,了解它们如何应用于企业决策、创新和战略规划等关键领域。通过掌握这些技巧,企业领导者将能够更有效地利用 AI 技术,在竞争激烈的商业环境中保持领先地位。 

典型的 AI 迷思在于两极分化的体悟,很牛啥都能干,很弱完全是个玩具。殊不知,AI 已经进入应用遍地开花,悄然落地了。有意思的是,提示词仍然是非常有必要的技能。

我们和 AI 交互的时候,缺乏背景的了解,为了更好把前因后果告诉它,让它好好干活,就有了提示词的关键要素,有了很多框架。比如去年新加坡提示词工程比赛冠军用到的一个框架。 

CO-STAR 框架简述

图片

其中: 

  • (C) 上下文(Context)
    • 也就是 Background,讨论的背景信息,让大语言模型聚焦在我们讨论的具体场景下。避免偏离主线瞎扯。
    • 如: 公司正在研发一个新产品,为公司会议准备简报
  • (O) 目标(Objective)
    • 希望大语言模型要做的事,清晰明确的目标,传统的 SMART 原则能帮我们梳理。
    • 如: 生成一份关于市场趋势的报告
  • (S) 风格(Style)
    • 大语言模型的语言风格。
    • 它有点像其他框架中的角色(Role),希望激发那个角色的训练数据。
    • 如: 希望资深商业顾问的风格写
  • (T) 语气(Tone)
    • 指定大语言模型回复时的态度。
    • 符合我们期望的情绪和情感,比如严肃的,言简意赅的等
    • 如: 正式且严谨
  • (A) 受众(Audience)
    • 指定目标受众。可以理解为对上面上下文的一个补充。
    • 我们希望大语言模型给出,我们能听懂的 行话 。
    • 如: 企业高管
  • (R) 答复/回应(Response)
    • 返回的格式,列表形式,会话形式,Markdown 格式等等。
    • 如 生成一份包含图表和数据的报告

结构化提示词,帮我们更好梳理需要大语言模型解决的问题。 

就像是给一个实习生交代事项,期待他是我们肚子里的蛔虫,必然会收获满满挫败感。 传统的思维框架,在和 AI 交互的过程同样适用。意思是说,如果我们平常和同事讲不清楚一件事,和 AI 也讲不清楚!

随着学习的深入,掌握了提示词的基本技巧以后,我们开始思考,如何把它们应用在更复杂的分析决策中。 

推理型提示技术的演进-CoT,CoT-SC

人们在推理型的提示词技术上已经有非常深入的研究。显著提升了早期的大模型,如 GPT 3.5。对于它们的探索,有益于我们理解后面的内容。 

思维链 (Chain of Thought, CoT)

囿于大模型始终预测下一个 token ,在解决数学问题上有天然的缺憾。于是有人发展了 CoT 技术。 

思维链 (CoT) 技术是这一演进的重要里程碑。它的核心思想是引导 AI 像人类一样,通过一系列逻辑步骤来解决问题。想象一下,当你面对一个复杂的商业决策时,你会如何思考?你可能会将问题分解为几个关键点,逐步分析每个点,然后得出结论。CoT 正是模拟了这种思考过程。 

例如,在制定新产品的市场进入策略时,我们可以使用 CoT 提示如下: 

分析我们新推出的智能家居控制中心的市场进入策略:
1. 首先,评估当前智能家居市场的规模和增长趋势。
2. 然后,分析我们产品的独特卖点和竞争优势。
3. 接着,确定目标客户群体及其需求。
4. 评估现有竞争对手的市场策略。
5. 基于以上分析,提出适合我们产品的市场定位。
6. 最后,设计具体的市场进入策略,包括定价、分销渠道和推广方式。
请逐步思考并详细解释每一步的推理过程。
简单来说,这个方法就是让大模型把中间的推理过程放出来。让我们有机会去观察它的推理过程,从而更能验证它的结果。

实际上,我们在使用的时候,简单到可笑,就只是告诉大模型: 

  • 请一步步思考/Let‘s Think step by step
  • 请深呼吸

图片

仔细观察,我们就会发现,如果 AI 的推理过程一开始就是错的,后面显然也是错的。聪明的研究者们注意到了这一点,他们想到了利用大语言模型的随机性特征: 为什么不多问几次,看看哪个答案出现的频率更高呢? 

这种巧妙的方法就是所谓的思维链自一致性(CoT-SC)。通过生成多个思维链并选择最一致的答案,CoT-SC 显著提高了 AI 推理的可靠性。 

思维链自一致性 (Chain of Thought Self-Consistency, CoT-SC)

为我们的智能家居控制中心制定定价策略:
1. 独立生成3种不同的定价策略,每种策略考虑以下因素:
   - 生产成本和目标利润率
   - 竞品价格
   - 目标客户群的购买力
   - 产品的独特价值主张
2. 对每种策略进行SWOT分析。
3. 比较这3种策略,评估它们的可行性和潜在市场反应。
4. 选择最合适的策略&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值