41.动态规划(9) | 打家劫舍、打家劫舍II(h)、打家劫舍III(h)

        今天是打家劫舍系列,难度从前往后递增,只有第1道自己做出来了。第2、3道都是将DP作为解法的一部分,都有难度,尤其是第3题。第2道题要计算两个dp数组,再从中取较大值。第3道题有2种解法。第1种解法回顾了记忆化递归;第2种解法则是初次接触树形DP,将当前节点的dp数组作为返回值返回,供上一层的递归函数判断处理。


第1题(LeetCode 198. 打家劫舍

        之前遇到过,这次自己解决了。dp[i]定义为从前i家房屋能获取的金额。状态转移方程方面,对于第2家房屋,只有打劫或不打劫两个选项。如果不打劫的话,就取上一个值dp[i - 1];而如果打劫的话,就意味着上一个房屋不在考虑范围内,所以要取上“上一个房屋对应的dp值”与“当前房屋价值”的和,即dp[i - 2] + nums[i]。目标是获取尽可能多的金额,所以从两者中取较大值,对应状态转移方程为dp[i] = max(dp[i - 1], dp[i - 2] + nums[i])。初始化方面,对于前0个房屋,最优选择就是打劫第0个房屋,所以设置dp[0]为nums[0];对于前1个房屋,应该打劫第0、第1个房屋中价值较大的,所以设置为max(dp[0], dp[1])。每个点的值都依赖于其左方的2个值,所以从左向右遍历。

class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() == 1) {
            return nums[0];
        }
        vector<int> dp(nums.size());
        dp[0] = nums[0];
        dp[1] = max(nums[0], nums[1]);
        for (int i = 2; i < nums.size(); ++i) {
            dp[i] = max(dp[i - 1], dp[i - 2] + nums[i]);
        }
        return dp.back();
    }
};

        这一题的重点是dp[i]仅对应将第i个房屋考虑在内,而不一定会打劫第i个房屋,具体是否由状态转移方程来计算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值