- 博客(55)
- 收藏
- 关注
原创 计算复变积分 $w = \int_0^1 (1 + it)^2 \, dt$
本文计算了复变积分 $w = \int_0^1 (1+it)^2 dt$。首先展开被积函数为$(1+2it-t^2)$,然后分别计算其实部和虚部的积分,得到解析解$w=\frac{2}{3}+i$。同时提供了MATLAB数值计算代码进行验证,结果与解析解一致。该问题展示了如何将复变积分分解为实部和虚部来计算,并通过数值方法验证结果的正确性。
2025-06-12 11:53:34
578
原创 复变函数f(z) = 1/z 对水平线和竖直线的映射特性分析
本文分析了复变函数 ( f(z) = \frac{1}{z} ) 对水平线和竖直线的映射特性。通过解析推导和几何解释,结果表明:水平线 ( y = c )(( c \neq 0 ))映射为圆心在 ( (0, -1/2c) ) 的圆,而竖直线 ( x = k )(( k \neq 0 ))映射为圆心在 ( (1/2k, 0) ) 的圆。实轴和虚轴分别映射为直线(除原点)。Matlab可视化验证了这些几何特性,揭示了反演变换将直线与圆相互转换的规律。
2025-06-11 15:10:05
564
原创 极坐标下讨论 f(z) = 1/z 的导数
本文在极坐标下讨论了函数 ( f(z) = \frac{1}{z} ) 的导数性质。首先将复数表示为 ( z = re^{i\theta} ),推导出 ( f(z) ) 的极坐标形式。通过直接求导和验证Cauchy-Riemann方程,证明该函数在 ( z \neq 0 ) 时处处可导,导数为 ( f'(z) = -\frac{1}{r^2} e^{-i2\theta} )。同时分析了导数的几何意义,表明其模与幅角的变化规律。最终得出结论:( f(z) ) 在复平面上除原点外解析,其导数表达式在极坐标下具有
2025-06-11 15:08:46
316
原创 复变函数极限介绍与MATLAB演示
设函数fzf(z)fz在点z0z_0z0的某个去心邻域内有定义,如果存在复数LLL,使得对于任意ϵ0ϵ0,存在δ0\delta > 0δ0,当0∣z−z0∣δ0∣z−z0∣δ时,有∣fz−L∣ϵ∣fz−L∣ϵ,则称fzf(z)fz当zzz趋近于z0z_0z0时的极限为LLLlimz→z0fzLz→z0limfzL。
2025-06-07 16:10:26
674
原创 复变指数函数 $w = e^z$ 的映射图像及MATLAB演示
本文研究了复变指数函数w=e^z的映射特性,重点分析了其对垂直直线和水平直线的变换效果。
2025-06-06 08:51:02
1082
原创 复变函数 $w = z^2$ 的映射图像演示
本文分析了复变函数w = z^2的映射特性,包括极坐标和直角坐标的转换关系,并通过MATLAB演示了该函数的可视化效果。
2025-06-02 22:55:16
1275
原创 使用MATLAB进行数据描述性统计的完整指南
本文介绍了如何使用MATLAB进行数据描述性统计分析。首先,通过生成随机学生成绩数据并导入MATLAB工作环境,创建了一个包含学生ID和六科成绩的表格,然后进行描述性统计。
2025-05-20 08:00:00
536
原创 MATLAB中的continue语句:精细控制循环流程
continue是MATLAB中的一个流程控制语句,用于跳过当前循环迭代中剩余的语句,直接进入下一次循环迭代。与break语句(完全终止循环)不同,continue只是中断当前这一次的循环,循环本身会继续执行。continue语句是MATLAB循环控制中的重要工具,它允许我们更精细地控制循环的执行流程,特别是在需要跳过某些特定迭代的场景中。
2025-05-19 07:00:00
424
原创 matlab求矩阵的逆、行列式、秩、转置
本文介绍了MATLAB中用于矩阵运算的四个常用函数。inv用于计算可逆矩阵的逆矩阵,det用于计算方阵的行列式,rank用于返回矩阵的秩,表示其线性无关行(列)数,而transpose(或.')则用于返回矩阵的转置矩阵。每个函数都通过简单的代码示例展示了其基本用法,帮助用户快速理解并应用这些矩阵操作。
2025-05-17 23:44:36
465
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人