使用MATLAB进行数据描述性统计的完整指南
描述性统计是数据分析的基础步骤,它帮助我们理解数据的分布特征、集中趋势和离散程度。本文将介绍如何使用MATLAB进行全面的描述性统计分析。
1. 数据准备与导入
首先,我们需要将数据导入MATLAB工作环境:
lc
clear
% 设置随机种子
rng(42);
% 生成100名学生的成绩(6科,均匀分布随机整数)
numStudents = 100;
scores = randi([0, 100], numStudents, 6); % 100×6 矩阵
% 定义科目名称
subjects = {'Chinese', 'Math', 'English', 'Physics', 'Chemistry', 'Biology'};
% 创建Table
studentScores = array2table(scores, 'VariableNames', subjects);
% 添加学生ID(可选)
studentScores.ID = (1:numStudents)';
cols=studentScores.Properties.VariableNames;
newCols=[cols(end), cols(1:end-1)]; %标签调换位置
studentScores=studentScores(:,newCols);
disp(head(studentScores, 5)); % 显示前5名学生成绩
2. 基本描述性统计量
MATLAB提供了多种计算基本统计量的函数:(均为按照列操作)
%描述性统计
scores=table2array(studentScores); %提取分数
min_val = min(scores(:,2:end)); %最小值
max_val = max(scores(:,2:end)); %最大值
mean_val = mean(scores(:,2:end)); %平均值
median_val = median(scores(:,2:end)); %中位数
std_dev = std(scores(:,2:end)); %标准差
variance = var(scores(:,2:end)); %方差
skewness_val = skewness(scores(:,2:end)); %偏度
kurtosis_val = kurtosis(scores(:,2:end)); %峰度
% 使用单个函数计算多个统计量
stats = [min_val; max_val; mean_val; median_val; std_dev; variance; skewness_val; kurtosis_val];
stat_names = {'Minimum', 'Maximum', 'Mean', 'Median', 'Std Dev', 'Variance', 'Skewness', 'Kurtosis'};
% 显示结果
stats_table=array2table(stats,'VariableNames', subjects);
stats_table.name=stat_names';
disp('基本描述性统计量:');
disp(stats_table);
结论
以上是简单的描述性统计操作方法,希望对大家有用