PyTorch 学习笔记

这篇博客详细介绍了PyTorch的基本操作,包括Tensor的使用、属性如Device和Shape、索引、初始化及基础函数。进一步探讨了PyTorch的神经网络模块torch.nn,涵盖nn.Linear、nn.ReLU、nn.BatchNorm1d、nn.Sequential等组件,以及优化、训练循环和新nn类的应用。
摘要由CSDN通过智能技术生成

一、基本操作

1.使用

import torch

2.Tensor Properties

example_tensor = torch.Tensor(
    [
     [[1, 2], [3, 4]], 
     [[5, 6], [7, 8]], 
     [[9, 0], [1, 2]]
    ]
)
example_tensor

output:
tensor([[[1., 2.],
         [3., 4.]],
        [[5., 6.],
         [7., 8.]],
        [[9., 0.],
         [1., 2.]]])

①Device

example_tensor.device

output:
device(type='cpu')

②Shape

example_tensor.shape

output:
torch.Size([3, 2, 2])
print("shape[0] =", example_tensor.shape[0])
print("size(1) =", example_tensor.size(1))

output:
shape[0] = 3
size(1) = 2
print("Rank =", len(example_tensor.shape))
print("Number of elements =", example_tensor.numel())

Rank = 3
Number of elements = 12

3.Indexing Tensors索引张量

example_tensor[1]

out:
tensor([[5., 6.],
        [7., 8.]])
example_tensor[1, 1, 0]

out:
tensor(7.)
#获取标量值
example_scalar = example_tensor[1, 1, 0]
example_scalar.item()

out:
7.0
#每个矩阵左上角元素
example_tensor[:, 0, 0]

out:
tensor([1., 5., 9.])

4.Initializing

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值