不同CPU的MATLAB性能表现的简单对比方法

本文探讨了MATLAB在不同CPU上的性能表现,指出多线程和浮点硬件对MATLAB运行速度的影响。通过CPU-Z的跑分测试,展示了多线程性能与MATLAB计算时间的关系,强调了AMD CPU在性价比上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MATLAB性能表现

小结:程序不同,无法一概而论。可以分为两部分:1、多线程,2、浮点数。【好像说了一堆众所周知的废话】

参考网址
https://www.mathworks.com/support/requirements/choosing-a-computer.html

具有更多CPU内核的计算机可以胜过具有更少CPU内核数量的计算机,但是结果会因MATLAB应用程序而异。MATLAB自动使用多线程来利用许多MATLAB应用程序中的自然并行性。但是,并非所有MATLAB函数都是多线程的,并且速度会随算法而变化。为了获得更多功能,并行计算工具箱提供了并行编程结构,可以更直接地利用多个计算机内核。

MATLAB的性能取决于浮点硬件的存在。在许多CPU上,浮点单元(FPU)的数量等于CPU内核的数量。但是,在某些处理器上,单个FPU可能在多个CPU内核之间共享,这可能会造成性能瓶颈。

虚拟内核可以适度地提高整体系统性能,但是它们可能对MATLAB应用程序的性能影响很小。同时多线程使计算机看起来具有比实际内核多两倍的内核。当使用Windows Task Manager之类的工具时,MATLAB似乎仅使用计算机上可用的一半CPU内核,而实际上“未使用”的一半实际上是由超线程创建的虚拟内核。

多线程的影响

从过往的使用体验,MATLAB其实可以吃满核心的。比如B站评测:
在这里插入图片描述
而我的日常体验也是这样,后面展开。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值