参数管理(深度学习计算)

参数管理

之前的介绍中,我们只依靠深度学习框架来完成训练的工作, 而忽略了操作参数的具体细节。 本节,我们将介绍以下内容:

1、访问参数,用于调试、诊断和可视化。

2、参数初始化。

3、在不同模型组件间共享参数。

我们首先看一下具有单隐藏层的多层感知机。

import torch
from torch import nn

#仅包含一层隐层的多层感知机
net = nn.Sequential(nn.Linear(4,8), nn.ReLU(), nn.Linear(8,1))
X = torch.rand(size=(2, 4))                #定义X数据集为2行4列
net(X)                                     #使用神经网络计算
tensor([[-0.0680],
        [-0.2413]], grad_fn=<AddmmBackward0>)

参数访问

我们从已有模型中访问参数。

当通过Sequential类定义模型时, 我们可以通过索引来访问模型的任意层。 这就像模型是一个列表一样,每层的参数都在其属性中。

如下所示,我们可以检查第二个全连接层的参数。

print(net[2].state_dict())                 #打印整个网络的所有权重信息
OrderedDict([('weight', tensor([[-0.1889, -0.1256, -0.0763,  0.0637, -0.3450,  0.1966, -0.2889, -0.3421]])), 
('bias', tensor([0.2105]))])

输出的结果告诉我们一些重要的事情: 首先,这个全连接层包含两个参数,分别是该层的权重和偏置。 两者都存储为单精度浮点数(float32)。 注意,参数名称允许唯一标识每个参数,即使在包含数百个层的网络中也是如此。

目标参数

注意,每个参数都表示为参数类的一个实例。

要对参数执行任何操作,首先我们需要访问底层的数值。 有几种方法可以做到这一点。有些比较简单,而另一些则比较通用。

下面的代码从第二个全连接层(即第三个神经网络层)提取偏置, 提取后返回的是一个参数类实例,并进一步访问该参数的值。

print(type(net[2].bias))                #输出偏置的数据类型

print(net[2].bias)                      #输出神经网络第三层的偏置
print(net[2].bias.data)                 #输出偏置量的值
<class 'torch.nn.parameter.Parameter'>
Parameter containing:
tensor([0.2105], requires_grad=True)
tensor([0.2105])

参数是复合的对象,包含值、梯度和额外信息。 这就是我们需要显式参数值的原因。 除了值之外,我们还可以访问每个参数的梯度。 在上面这个网络中,由于我们还没有调用反向传播,所以参数的梯度处于初始状态。

net[0].bias.grad == None               #判断神经网络的梯度是否为空
True
一次性访问所有参数

当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦。 当我们处理更复杂的块(例如,嵌套块)时,情况可能会变得特别复杂, 因为我们需要递归整个树来提取每个子块的参数。 下面,我们将通过演示来比较访问第一个全连接层的参数和访问所有层。

print(*[(name, param.shape) for name, param in net[0].named_parameters()])
print(*[(name, param.shape) for name, param in net.named_parameters()])
('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))
('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))

这为我们提供了另一种访问网络参数的方式,如下所示。

net.state_dict()['2.bias'].data
tensor([0.2105])
从嵌套块收集参数

让我们看看,如果我们将多个块相互嵌套,参数命名约定是如何工作的。 我们首先定义一个生成块的函数(可以说是“块工厂”),然后将这些块组合到更大的块中。

def block1():
    return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                         nn.Linear(8, 4), nn.ReLU())

def block2():
    net = nn.Sequential()
    for i in range(4):
        # 在这里嵌套
        net.add_module(f'block {i}', block1())
    return net

rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)
tensor([[0.1242],
        [0.1242]], grad_fn=<AddmmBackward0>)

设计了网络后,我们看看它是如何工作的。

print(rgnet)
Sequential(
  (0): Sequential(
    (block 0): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 1): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 2): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
    (block 3): Sequential(
      (0): Linear(in_features=4, out_features=8, bias=True)
      (1): ReLU()
      (2): Linear(in_features=8, out_features=4, bias=True)
      (3): ReLU()
    )
  )
  (1): Linear(in_features=4, out_features=1, bias=True)
)

因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。 下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。

rgnet[0][1][0].bias.data
tensor([-0.1889, -0.4484, -0.2295, -0.2854,  0.0242, -0.0675, -0.2603, -0.4783])

参数初始化

知道了如何访问参数后,现在我们看看如何正确地初始化参数。 我们之前讨论了良好初始化的必要性。 深度学习框架提供默认随机初始化, 也允许我们创建自定义初始化方法, 满足我们通过其他规则实现初始化权重。

默认情况下,PyTorch会根据一个范围均匀地初始化权重偏置矩阵, 这个范围是根据输入和输出维度计算出的。 PyTorch的nn.init模块提供了多种预置初始化方法。

内置初始化

让我们首先调用内置的初始化器。 下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量, 且将偏置参数设置为0。

def init_normal(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, mean=0, std=0.01)
        nn.init.zeros_(m.bias)
        
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]
(tensor([ 0.0054,  0.0063, -0.0088,  0.0034]), tensor(0.))

我们还可以将所有参数初始化为给定的常数,比如初始化为1。

def init_constant(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 1)
        nn.init.zeros_(m.bias)
        
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]
(tensor([1., 1., 1., 1.]), tensor(0.))

我们还可以对某些块应用不同的初始化方法。 例如,下面我们使用Xavier初始化方法初始化第一个神经网络层, 然后将第三个神经网络层初始化为常量值42。

def init_xavier(m):
    if type(m) == nn.Linear:
        nn.init.xavier_normal(m.weight)
        
def init_42(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 42)
        
net[0].apply(init_xavier)
net[2].apply(init_42)

print(net[0].weight.data[0])
print(net[2].weight.data)
tensor([ 0.4588,  0.3794,  0.1552, -0.4478])
tensor([[42., 42., 42., 42., 42., 42., 42., 42.]])
自定义初始化

有时,深度学习框架没有提供我们需要的初始化方法。 在下面的例子中,我们使用以下的分布为任意权重参数 w w w 定义初始化方法:

w ∼ { U ( 5 , 10 )  可能性  1 4 0  可能性  1 2 U ( − 10 , − 5 )  可能性  1 4 \begin{aligned} w \sim \begin{cases} U(5, 10) & \text{ 可能性 } \frac{1}{4} \\ 0 & \text{ 可能性 } \frac{1}{2} \\ U(-10, -5) & \text{ 可能性 } \frac{1}{4} \end{cases} \end{aligned} w U(5,10)0U(10,5) 可能性 41 可能性 21 可能性 41

同样,我们实现了一个my_init函数来应用到net。

def my_init(m):
    if type(m) == nn.Linear:
        print('Init', *[(name, param.shape) for name, param in m.named_parameters()][0])
        nn.init.uniform_(m.weight, -10, 10)
        m.weight.data *= m.weight.data.abs() >= 5

net.apply(my_init)
net[0].weight[:2]
Init weight torch.Size([8, 4])
Init weight torch.Size([1, 8])

tensor([[-8.9381,  0.0000, -0.0000, -6.9457],
        [-5.9623, -9.2524,  5.7907, -0.0000]], grad_fn=<SliceBackward0>)

注意,我们始终可以直接设置参数。

net[0].weight.data
tensor([[-8.9381,  0.0000, -0.0000, -6.9457],
        [-5.9623, -9.2524,  5.7907, -0.0000],
        [-0.0000,  0.0000,  6.8365,  6.4802],
        [-0.0000,  0.0000, -5.2440, -7.3731],
        [-0.0000, -7.2279, -5.2957,  0.0000],
        [-0.0000, -5.1149,  6.7424, -5.6789],
        [ 9.0664,  0.0000, -0.0000, -9.5060],
        [-0.0000,  9.1128,  0.0000,  5.1178]])
net[0].weight.data[:] += 1                         #对所有权重均加1
net[0].weight.data[0,0] = 42                       #权重的第一行一列设为42
net[0].weight.data                                 #输出权重矩阵
tensor([[42.0000,  1.0000,  1.0000, -5.9457],
        [-4.9623, -8.2524,  6.7907,  1.0000],
        [ 1.0000,  1.0000,  7.8365,  7.4802],
        [ 1.0000,  1.0000, -4.2440, -6.3731],
        [ 1.0000, -6.2279, -4.2957,  1.0000],
        [ 1.0000, -4.1149,  7.7424, -4.6789],
        [10.0664,  1.0000,  1.0000, -8.5060],
        [ 1.0000, 10.1128,  1.0000,  6.1178]])

参数绑定

有时我们希望在多个层间共享参数: 我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。

#我们需要给共享层一个名称,以便可以应用它的参数
shared = nn.Linear(8, 8)

#定义一个神经网络,共有4层线性网络
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                   shared, nn.ReLU(),
                   shared, nn.ReLU(), nn.Linear(8, 1))

net(X)
#现在检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])

net[2].weight.data[0, 0] = 100

#确保它们实际上是同一个对象,而不是只有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])
tensor([True, True, True, True, True, True, True, True])
tensor([True, True, True, True, True, True, True, True])

这个例子表明第三个和第五个神经网络层的参数是绑定的。 它们不仅值相等,而且由相同的张量表示。 因此,如果我们改变其中一个参数,另一个参数也会改变。 你可能会思考:当参数绑定时,梯度会发生什么情况? 答案是由于模型参数包含梯度,因此在反向传播期间第二个隐藏层 (即第三个神经网络层)和第三个隐藏层(即第五个神经网络层)的梯度会加在一起。

小结

1.我们有几种方法可以访问、初始化和绑定模型参数。

2.我们可以使用自定义初始化方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gaolw1102

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值