从零实现Lenet-初级卷积神经网络(CNN卷积神经网络)

LeNet 卷积神经网络

LeNet,它是最早发布的卷积神经网络之一,因其在计算机视觉任务中的高效性能而受到广泛关注。

这个模型是由AT&T贝尔实验室的研究员 Yann LeCun 在1989年提出的(并以其命名),目的是识别图像 [LeCun et al., 1998]中的 手写数字

我们将再次训练测试 Fashion-MNIST 数据集,之前我们已经使用了softmax回归和多层感知机,之前首先将每个大小为 28 × 28 28 \times 28 28×28 的图像展平为一个 784 维的固定长度的一维向量,然后用全连接层对其进行处理。

现在,我们已经掌握了卷积层的处理方法,我们可以在图像中保留空间结构。 同时,用卷积层代替全连接层的另一个好处是:模型更简洁、所需的参数更少

定义Lenet模型

总体来看,LeNet(LeNet-5)由两个部分组成:

1、卷积编码器:由两个卷积层组成;

2、全连接层密集块:由三个全连接层组成。

如下图所示:

在这里插入图片描述

每个卷积块中的基本单元是一个卷积层、一个sigmoid激活函数平均汇聚层(池化层)。此时需注意,虽然ReLU和最大汇聚层更有效,但它们在20世纪90年代还没有出现。

卷积的输出形状由批量大小、通道数、高度、宽度决定。

LeNet的稠密块有三个全连接层,分别有120、84和10个输出。因为我们在执行分类任务,所以输出层的10维对应于最后输出结果的数量。

通过下面的LeNet代码,你会相信用深度学习框架实现此类模型非常简单。我们只需要实例化一个Sequential块并将需要的层连接在一起。

import torch
from torch import nn
from d2l import torch as d2l

#定义Lenet的CNN模型
net = nn.Sequential(
    
    #卷积层和池化层
    nn.Conv2d(1, 6, kernel_size=5, padding=2),               #第一层卷积层,输入通道数1、输出通道数6、卷积核为(5, 5),填充为(4, 4)
    nn.Sigmoid(),                                            #Sigmoid()函数
    nn.AvgPool2d(kernel_size=2, stride=2),                   #平均池化层(又称平均汇聚层), 核形状为(2, 2),步幅为2
    nn.Conv2d(6, 16, kernel_size=5),                         #第二层卷积层,输入通道数6、输出通道数16、卷积核为(5, 5)
    nn.Sigmoid(),                                            #Sigmoid()函数
    nn.AvgPool2d(kernel_size=2, stride=2),                   #平均池化层(又称平均汇聚层), 核形状为(2, 2),步幅为2
    
    #全连接层
    nn.Flatten(),                                            #Flatten()降维打击函数
    nn.Linear(16 * 5 * 5, 120),                              #线性模型,全连接层,形状为(400, 120)
    nn.Sigmoid(),                                            #Sigmoid()函数
    nn.Linear(120, 84),                                      #线性模型,全连接层,形状为(120, 84)
    nn.Sigmoid(),                                            #Sigmoid()函数
    nn.Linear(84, 10))                                       #线性模型,全连接层,形状为(84, 10)


我们对原始模型做了一点小改动,去掉了最后一层的高斯激活。除此之外,这个网络与最初的LeNet-5一致。

下面,我们将一个大小为 28 × 28 28 \times 28 28×28 的单通道(黑白)图像通过LeNet。通过在每一层打印输出的形状,我们可以检查模型,以确保其操作与我们期望的下图一致。

在这里插入图片描述

#定义X
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)

for layer in net:
    X = layer(X)
    print(layer.__class__.__name__, 'output shape: \t\t', X.shape)
Conv2d output shape: 		 torch.Size([1, 6, 28, 28])
Sigmoid output shape: 		 torch.Size([1, 6, 28, 28])
AvgPool2d output shape: 		 torch.Size([1, 6, 14, 14])
Conv2d output shape: 		 torch.Size([1, 16, 10, 10])
Sigmoid output shape: 		 torch.Size([1, 16, 10, 10])
AvgPool2d output shape: 		 torch.Size([1, 16, 5, 5])
Flatten output shape: 		 torch.Size([1, 400])
Linear output shape: 		 torch.Size([1, 120])
Sigmoid output shape: 		 torch.Size([1, 120])
Linear output shape: 		 torch.Size([1, 84])
Sigmoid output shape: 		 torch.Size([1, 84])
Linear output shape: 		 torch.Size([1, 10])

请注意,在整个卷积块中,与上一层相比,每一层特征的高度和宽度都减小了。 第一个卷积层使用2个像素的填充,来补偿 5 × 5 5 \times 5 5×5 卷积核导致的特征减少。 相反,第二个卷积层没有填充,因此高度和宽度都减少了4个像素。 随着层叠的上升,通道的数量从输入时的1个,增加到第一个卷积层之后的6个,再到第二个卷积层之后的16个。 同时,每个汇聚层的高度和宽度都减半。最后,每个全连接层减少维数,最终输出一个维数与结果分类数相匹配的输出。

模型训练

现在我们已经实现了LeNet,让我们看看LeNet在Fashion-MNIST数据集上的表现。

batch_size = 256                                   #定义小批量数据集大小

#定义训练集迭代器与测试集迭代器
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)

虽然卷积神经网络的参数较少,但与深度的多层感知机相比,它们的计算成本仍然很高,因为每个参数都参与更多的乘法。 如果有机会使用GPU,可以用它加快训练。

def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
    """使用GPU计算模型在数据集上的精度"""
    if isinstance(net, nn.Module):
        net.eval()  # 设置为评估模式
        if not device:
            device = next(iter(net.parameters())).device                               #存储神经网络参数的设备再存储X、y
    # 正确预测的数量,总预测的数量
    metric = d2l.Accumulator(2)
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(X, list):
                # BERT微调所需的(之后将介绍)
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            y = y.to(device)
            #d2l.accuracy(net(X), y)包,用来测试数据集的准确度
            metric.add(d2l.accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

开始训练:

#@save
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """用GPU训练模型(在第六章定义)"""
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)
    for epoch in range(num_epochs):
        # 训练损失之和,训练准确率之和,样本数
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')

现在,我们训练和评估LeNet-5模型。

lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.471, train acc 0.823, test acc 0.785
4683.1 examples/sec on cpu

在这里插入图片描述

小结

1、卷积神经网络(CNN)是一类使用卷积层的网络。

2、在卷积神经网络中,我们组合使用卷积层、非线性激活函数和汇聚层

3、为了构造高性能的卷积神经网络,我们通常对卷积层进行排列,逐渐降低其表示的空间分辨率,同时增加通道数。

4、在传统的卷积神经网络中,卷积块编码得到的表征在输出之前需由一个或多个全连接层进行处理。

5、LeNet是最早发布的卷积神经网络之一。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gaolw1102

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值