Deep-RNN-深度循环神经网络(RNN循环神经网络)

本文介绍了深度循环神经网络(Deep-RNN),它通过堆叠多层隐藏层来处理不同时间尺度的数据。每个隐藏层的隐状态在时间步和层间传递,形成复杂的依赖关系。以LSTM为例,展示了在高级API中实现多层RNN的简洁代码。在训练和预测过程中,深度RNN模型需要细致的调参。文章强调了深度RNN在序列模型中的应用和挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度循环神经网络

现在,我们来学习深度循环神经网络(Deep-RNN)

事实上,我们可以将多层循环神经网络堆叠在一起, 通过对几个简单层的组合,产生了一个灵活的机制。 特别是,数据可能与不同层的堆叠有关。 例如,我们可能希望保持有关金融市场状况 (熊市或牛市)的宏观数据可用, 而微观数据只记录较短期的时间动态。

下图描述了描述了一个具有 L L L个隐藏层的深度循环神经网络,每个隐状态都连续地传递到当前层的下一个时间步和下一层的当前时间步

在这里插入图片描述

函数的依赖关系

我们可以将深度架构中的函数依赖关系形式化,这个架构是由上图中描述了 L L L个隐藏层构成。后续的讨论主要集中在经典的循环神经网络模型上,但是这些讨论也适应于其他序列模型。

假设在时间步 t t t有一个小批量的输入数据 X t \mathbf{X}_t Xt 。同时,将 l t h l^\mathrm{th} lth隐藏层( l = 1 , … , L l=1,\ldots,L l=1,,L)的隐状态设为 H t ( l ) \mathbf{H}_t^{(l)} Ht(l)
输出层变量设为 O t \mathbf{O}_t Ot
设置 H t ( 0 ) = X t \mathbf{H}_t^{(0)} = \mathbf{X}_t Ht(0)=Xt
l l l个隐藏层的隐状态使用激活函数 ϕ l \phi_{l} ϕl,则:

H t = ϕ l ( H t ( l − 1 ) W x h ( l ) + H t − 1 ( l ) W h h ( l ) + b h l ) , H_{t} = \phi_l(H_{t}^{(l-1)}W_{xh}^{(l)} + H_{t-1}^{(l)}W_{hh}^{(l)} + b_h^{l}), Ht=ϕl(Ht(l1)Wxh(l)+Ht1(l)Whh(l)+bhl),

其中,权重 W x h ( l ) \mathbf{W}_{xh}^{(l)} Wxh(l) W h h ( l ) \mathbf{W}_{hh}^{(l)} Whh(l)和偏置 b h ( l ) \mathbf{b}_h^{(l)} bh(l) 都是第 l l l个隐藏层的模型参数。

细心的小伙伴们可能会发现,上面公式与普通的循环神经网络模型的差别就是将 X t X_{t} Xt 替换成了 H t ( l − 1 ) H_{t}^{(l-1)} Ht(l1),这正是由于多层隐藏层的缘故。

最后,输出层的计算仅基于第 l l l个隐藏层最终的隐状态:

O t = H t ( L ) W h q + b q O_{t} = H_{t}^{(L)}W_{hq} + b_{q} Ot=Ht(L)Whq+bq

其中,权重 W h q \mathbf{W}_{hq} Whq 和偏置 b q \mathbf{b}_q bq 都是输出层的模型参数。

与多层感知机一样,隐藏层数目 L L L和隐藏单元数目 h h h都是超参数。也就是说,它们可以由我们调整的。所以我们也可以很容易地得到深度门控循环神经网络或深度长短期记忆神经网络。

简洁实现

实现多层循环神经网络所需的许多逻辑细节在高级API中都是现成的。 简单起见,我们仅示范使用此类内置函数的实现方式。 以长短期记忆网络模型为例, 该代码与之前在LSTM使用的代码非常相似, 实际上唯一的区别是我们指定了层的数量, 而不是使用单一层这个默认值。 像之前一样,我们从加载数据集开始。

import torch
from torch import nn
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

我们现在通过num_layers的值来设定隐藏层数。

vocab_size, num_hiddens, num_layers = len(vocab), 256, 2
num_inputs = vocab_size

device = d2l.try_gpu()

#定义LSTM隐藏层,层数为2
lstm_layer = nn.LSTM(num_inputs, num_hiddens, num_layers)

model = d2l.RNNModel(lstm_layer, len(vocab))
model = model.to(device)

训练与预测

由于使用了长短期记忆网络模型来实例化两个层,因此训练速度被大大降低了。

num_epochs, lr = 500, 2
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
perplexity 1.0, 3520.3 tokens/sec on cpu
time traveller with a slight accession ofcheerfulness really thi
travelleryou can show black is white by argument said filby

在这里插入图片描述

小结

1、在深度循环神经网络中,隐状态的信息被传递到当前层的下一时间步和下一层的当前时间步

2、有许多不同风格的深度循环神经网络, 如长短期记忆网络、门控循环单元、或经典循环神经网络。 这些模型在深度学习框架的高级API中都有涵盖。

3、总体而言,深度循环神经网络需要大量的调参(如学习率和修剪) 来确保合适的收敛,模型的初始化也需要谨慎。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gaolw1102

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值