自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(35)
  • 收藏
  • 关注

原创 机器学习线性回归之交叉验证

不能在训练集上进行模型性能评估,而应该在新的测试数据上进行,这对应着推广能力、泛化能力。但在实际应用中,测试数据的标签是未知、待预测的,那怎么办呢?一般是从训练数据中分出一部分作为校验集,该集合不参与训练,训练数据被切分得到的两个数据集,被称为是训练集和校验集,但好像有些时候也把拆分之前的训练数据叫作训练集,所以当出现训练集这样的属于时,有必要的话,需要明确时拆分之前,还是拆分之后的。当数据很多时...

2024-05-09 09:08:04 462

原创 机器学习线性回归之损失函数与过拟合

自我记录总结之用,可能不适合他人。预测值用y冒表示。真值用y表示。残差(Residual) = R = y - y冒。残差平方 = #beginR^2#end新的改变我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:全新的界面设计 ,将会带来全新的写作体验;在创作中心设置你喜爱的代码高亮样式,...

2024-05-09 09:07:45 907 1

原创 机器学习线性回归之梯度下降

为什么要使用梯度下降  ∙\bullet∙解析求解法中对N*D的输入矩阵X进行SVD分解的复杂度是O(N2D)O(N^2D)O(N2D)  ∙\bullet∙样本数目N很大或者特征维数D很大时,SVD计算的复杂度很高,或者机器的内存根本就不够。为了解决这个问题,可采用以下方式进行优化求解:梯度下降、随即梯度下降、次梯度下降、坐标轴下降等。梯度下降(Gradient Descent)是求解无约束...

2024-05-09 09:07:33 543 1

原创 机器学习线性回归Scikit-Learn API

1.损失函数一节涉及到的API∙\bullet∙ Scikit-Learn中实现了采用Huber损失的回归模型:HuberRegressor  #Huber损失  from sklearn.linear_model import HuberRegressor  huber = HuberRegressor()  huber.fit(X_train, y_train)  y_train_...

2024-05-09 09:07:23 863 1

原创 机器学习线性回归之回归模型评价指标

阿斯顿发∙\bullet∙ 开方均方误差RMSE(Rooted Mean Squared Error)RMSE(y,y^)=1N∑i=1N(yi−y^i)2RMSE(y, \hat y) = \sqrt{\frac{1}{N}\sum_{i=1}^{N} (y_{i} - \hat y_{i})^2} RMSE(y,y^​)=N1​i=1∑N​(yi​−y^​i​)2​∙\bullet∙ 平...

2024-05-09 09:07:05 742 1

原创 logistic回归3—正则项

Logistic回归的目标函数∙\bullet∙ Logistic回归的损失函数采用Logistic损失

2024-05-08 19:46:27 715

原创 logistic回归1—简介

监督学习(Supervised Learning)∙\bullet∙ 训练数据:给定训练数据集D={xi,yi}i=1ND=\{\mathbf x_{i},y_{i}\}_{i=1}^ND={xi​,yi​}i=1N​,其中N为训练样本数目,i为训练样本索引,xi\mathbf x_{i}xi​为第i各样本的输入特征,yiy_{i}yi​为对应的输出\响应。∙\bullet∙ 回归:根据训练样...

2024-05-08 19:46:07 667

原创 logistic回归2—损失函数

分类任务定义∙\bullet∙ 给定训练数据D={xi,yi}i=1ND=\{{\mathbf x_{i}, y_{i}}\}_{i=1}^ND={xi​,yi​}i=1N​,其中N为训练样本的数目,i为样本索引,xi\mathbf x_{i}xi​为第i个样本的输入特征,yiy_{i}yi​为对应的输出/响应,yi∈σ,σ={1,...,C}y_{i} \in \sigma,\sigma=\{...

2024-05-08 19:45:50 755

原创 Logistic回归4—牛顿法

牛顿法∙\bullet∙ 牛顿法亦被称为牛顿-拉夫逊(Newton-Raphson)方法。牛顿在17世纪提出来用于求解方程的根。∙\bullet∙ 假设点x∗x^*x∗为函数f(x)f(x)f(x)的根,则f(x∗)=0f(x^*) = 0f(x∗)=0。∙\bullet∙ 将函数f(x)f(x)f(x)在点xtx^txt处进行一阶泰勒展开有:f(x)≈f(xt)+(x−xt)f′(xt)f...

2024-05-08 19:45:36 698 1

原创 Logistic回归5—优化求解

Logistic回归的目标函数∙\bullet∙ Logistic回归的损失函数采用Logistic损失/交叉熵损失L(y,μ(x))=−ylogμ(x)−(1−y)log(1−μ(x))L(y, \mu(x)) = -ylog\mu(x) - (1-y)log(1-\mu(x))L(y,μ(x))=−ylogμ(x)−(1−y)log(1−μ(x))∙\bullet∙ 其中y为真值,μ(x)=...

2024-05-08 19:45:25 998

原创 Logistic回归6—多类分类任务

多类分类任务的实现方式:1对其他∙\bullet∙ 一对其他(One-vs-Rest, OVR)。对每个类别c,训练一个Logistic回归分类器fwc(x)f_{w}^c(\mathbf x)fwc​(x),预测y=cy=cy=c的概率。fwc(x)=P(y=c∣x,w),c=1,2,3f_{w}^c(\mathbf x) = P(y=c|\mathbf x, \mathbf w), c=1...

2024-05-08 19:45:10 613 1

原创 Logistic回归7—类别样本不均衡

爱是地方

2024-05-08 19:44:55 918 1

原创 常用数学公式

求导公式

2024-05-08 19:43:21 171

原创 SVM2—带松弛变量的SVM模型

当数据完全线性可分时∙\bullet∙ 最大化间隔的超平面,即SVM分类模型:maxw,b2∣∣w∣∣2max_{w,b}\frac{2}{||\mathbf w||_{2}}maxw,b​∣∣w∣∣2​2​s.t.   yi(wTxi+b)>=1,i=1,...,Ns.t.\space\space\space y_{i}(\mathbf w^T \mathb...

2024-05-08 19:42:46 698 1

原创 SVM1—简介

SVM(Support Vector Machine),既可以做分类,也可以做回归。线性回归和Logistic回归是从概率角度出发来推导原理,而SVM是从几何的角度出发。1. SVM:从几何出发的分类模型∙\bullet∙ 假定线性判别函数为:f(x)=wT+bf(\mathbf x) = \mathbf w^T + bf(x)=wT+b∙\bullet∙ 如果f(x)=wT+b=0f(\m...

2024-05-08 19:42:33 619 1

原创 SVM4—核方法

核方法∙\bullet∙ 前面我们用超平面(线性模型)来分开不同类型的训练箱体∙\bullet∙ 但在实际任务中,原始样本空间也许不存在一个超平面能将训练样本分开,例如:∙\bullet∙ 对这类问题,我们可以将原始空间映射到一个更高维的空间,使得在这个特征空间数据线性可分∙\bullet∙ 令ϕ(x)\phi(\mathbf x)ϕ(x)表示将x\mathbf xx映射后的特征向量,则在...

2024-05-08 19:42:19 733 1

原创 SVM5—支持向量回归SVR

ϵ\epsilonϵ不敏感损失函数∙\bullet∙ 在之前的线性回归模型中,只有当真值与预测值完全相等时,我们才认为损失为0(L2损失、L1损失、Huber损失)。∙\bullet∙ 在支持向量回归中,我们能容忍真值与预测值存在ϵ\epsilonϵ的偏差,即当yyy与y^\hat yy^​之间的差异大于ϵ\epsilonϵ时才计算损失,称为ϵ\epsilonϵ不敏感损失(ϵ\epsilonϵ...

2024-05-08 19:42:05 756 1

原创 SVM3—对偶问题(目标函数求解)_很多细节不明白未记录

∙\bullet∙ C-SVM的目标函数是带不等式约束的问题。J(w;b;C)=12∣∣w∣∣22+C∑i=1NξiJ(\mathbf w;b;C) = \frac{1}{2}||\mathbf w||_{2}^2 + C\sum_{i=1}^{N}\xi_{i}J(w;b;C)=21​∣∣w∣∣22​+Ci=1∑N​ξi​ subject to yi(w0+wTxi)&gt...

2024-05-08 19:41:36 554 1

原创 机器学习—决策树1

简介∙\bullet∙ 流行的决策树算法有: ID3、C4.5和CART。∙\bullet∙ 不同的决策树方法区别:选择特征/阈值(xj=tx_{j}= txj​=t)进行节点分裂的准则不同。  1)ID3:信息增益最大(对标签y提供信息最多的特征),倾向于选择取值多的特征进行分裂。  2)C4.5:ID3的改进,信息增益率最大  3)CART:分类:GINI指数最小;回归:均方误差最小...

2024-05-08 19:40:57 921 1

原创 机器学习—决策树2

CART树∙\bullet∙ CART是二叉树,既可以做分类,也可以做回归。由于是二叉树,分裂条件不是等号,而是不等号。∙\bullet∙ CART是二分递归划分:将当前样本集合划分为两个子集,为两个子节点,使得生成的每个非叶子节点都有两个分支。回归决策树  回归决策树也存在两个需要兼顾的方面,一是要误差少,与训练样本拟合得差不多,二是模型不要太复杂,在决策树里,就是区间不要太多,因为每...

2024-05-08 19:40:25 566 1

原创 机器学习—决策树3

例:建树∙\bullet∙ 根据蘑菇属性判断蘑菇有毒还是可食用:mushroom.csvP代表有毒,e代表可食用。∙\bullet∙ 将类别型特征进行标签编码:LabelEncoder。Scikit-Learn要求输入为数值特征。Scikit-Learn中需要的是数字输入,所以就转换为数字了。对于颜色这样本身无序的特征,如果是线性回归、Logistic回归,由于是要与w进行乘积的,是不能...

2024-05-07 20:02:25 899

原创 集成机器学习1—Bagging和随机森林1

1 模型的预测误差∙\bullet∙ 我们希望模型尽可能准确地描述数据背后的真实规律。∙\bullet∙ 准确就是预测误差小∙\bullet∙ 误差有三种来源,分别是:随机误差、偏差(bias)、方差(variance)∙\bullet∙ 随机误差是不可消除的,与产生数据的机制有关(如不同精度的设备得到的数据随机误差不同)。∙\bullet∙ 偏差和方差与“欠拟合”及“过拟合”联系在一起...

2024-05-07 20:01:56 960 1

原创 集成机器学习2—Bagging和随机森林2

1 随机森林∙\bullet∙ 决策树很容易过拟合,即偏差低、方差高。如果训练样本为一个叶子节点,误差为0。∙\bullet∙ Bagging是一种降低算法方差的方法,主要方式是平均多个模型的预测。Bagging:Bootstrap aggregating(自助聚集)。Bootstrap是一种样本采样方式,aggregating即是对模型进行平均∙\bullet∙ Bagging适合对偏差低...

2024-05-07 20:01:44 631 1

原创 集成机器学习5—Adaboost

1 Boosting∙\bullet∙ Boosting:将弱学习器组合成强学习器。  ∙\bullet∙ 构造一个性能很高的预测(强学习器)是一件很困难的事情  ∙\bullet∙ 但构造一个性能一般的预测(弱学习器)并不难    ∙\bullet∙ 弱学习器:性能比随机猜测略好(如层数不深的决策树)∙\bullet∙ Boosting学习框架  ∙\bullet∙ 学习第一个弱学习...

2024-05-07 20:01:24 810 1

原创 集成机器学习7—Scikit-Learn中的GBM—GBDT

∙\bullet∙ Scikit-Learn中的GBM采用的弱学习器是决策树,所以叫做GBDT。一般不常用GBDT,而用其他实现较好的方式XGBoost、LightGBM。∙\bullet∙ CART的简单历史两位教授在CART的基础之上,分别提出了Boosting和Bagging的方式。随机森林通过Bagging能够降低模型的方差,但偏差没有变化,所以需要每棵树精度比较高,也就是偏差比较小,...

2024-05-07 20:01:13 333 1

原创 集成机器学习6—GBM

1 Boosting的一般框架1.初始化f0(x)f_0(x)f0​(x)2.for m = 1 : M do  ∙\bullet∙ 找一个弱学习器ϕm(x)\phi_m(\mathbf x)ϕm​(x),使得ϕm(x)\phi_m(\mathbf x)ϕm​(x)能改进fm−1(x)f_{m-1}(\mathbf x)fm−1​(x)  ∙\bullet∙ 更新fm(x)=fm−1(x)...

2024-05-07 20:00:50 942 1

原创 集成机器学习8—XGBoost原理

XGBoost∙\bullet∙ XGBoost: eXtreme Gradient Boosting∙\bullet∙ Gradient Boosting Machines(GBM)的C++优化实现,快速有效。由DMLC(Distributed(Deep) Machine Learning Community)维护。∙\bullet∙ Tianqi Chen(on Quora.com): ...

2024-05-07 20:00:40 751 1

原创 集成机器学习12—LightGBM原理

1 LightGBM:Light Gradient Boosting Machine∙\bullet∙ LightGBM是Microsoft开发的一个GBDT算法框架,支持高效率的并行训练,并且具有以下有点  ∙\bullet∙ 更快的训练速度  ∙\bullet∙ 更低的内存消耗  ∙\bullet∙ 更好的准确率  ∙\bullet∙ 分布式支持,可以快速处理海量数据  对于更好...

2024-05-07 20:00:27 1045 1

原创 Logistic回归7—分类模型的性能评价指标

1 分类模型评估∙\bullet∙ 判断一个分类器对所用样本的分类能力,或者在不同的应用场合时需要有不同的指标。∙\bullet∙ Scikit-Learn中,评价指标计算可对每个样本施加权重,权重通过参数sample_weight指定。老师:在样本上施加权重,该样本上的指标乘以权重,可以得到所有样本的平均指标。那么这个平均的用词是否合适呢?2 分类模型的评价指标2.1 logistic损...

2024-05-07 20:00:07 1118 1

原创 非监督学习1—PCA降维原理

1. 降维∙\bullet∙ 降维:将原始高维数据降维到低维空间,这个低维空间也被称为嵌入空间  ∙\bullet∙ 原始的高维数据存在冗余  ∙\bullet∙ 数据的本质维度(intrinsic dimension)很低  ∙\bullet∙ 例:手写数字     ∙\bullet∙ 原始特征:28 * 28 = 784     ∙\bullet∙ 本质维度:方向、风格    ...

2024-05-07 19:59:49 642

原创 概率统计之期望方差协方差

奥术法师打法  ∙\bullet∙ 期望公式:E(X)=∑i=1nxi∗piE(X) = \sum_{i=1}^{n}x_{i} * p_{i}E(X)=i=1∑n​xi​∗pi​  ∙\bullet∙ 方差公式:D(X)=E[(X−E(X))2]=∑j=1n(xj−∑i=1nxi∗pi)2∗pjD(X) = E[(X-E(X))^2] = \sum_{j=1}^{n}(x_{j} - \su...

2024-05-07 19:58:07 754 1

原创 机器学习线性回归之坐标轴下降

梯度下降是非常有效的优化算法,但前提是目标函数可导。Lasso的目标函数是J(w)=∣∣y−Xw∣∣22+λ∣∣w∣∣1J(\mathbf w) = ||\mathbf y - X\mathbf w||_2^2 +\lambda||w||_{1}J(w)=∣∣y−Xw∣∣22​+λ∣∣w∣∣1​,其中正则项中的∣∣w∣∣1||w||_{1}∣∣w∣∣1​为绝对值函数,在w=0点处不可导,无法计算梯...

2024-05-07 19:57:26 771 1

原创 机器学习线性回归之解析求解

解析求解最小二乘法(OLS)的目标函数J(w)=∑i=1N(yi−f(xi))2J(w)=\sum_{i=1}^{N}(y_{i} - f(x_{i}))^2J(w)=i=1∑N​(yi​−f(xi​))2岭回归的目标函数J(w;w)=∑i=1N(yi−f(xi))2+λ∑j=1Dwj2J(w;w)=\sum_{i=1}^{N}(y_{i} - f(x_{i}))^2 + \lambda\su...

2024-05-07 19:56:46 857 1

原创 线性代数—行列式

行列式的概念是从解线性方程组的问题中引入的。对于二元线性一次方程组:a11x1+a12x2=b1a21x1+a22x2=b2\begin{alignedat}{3} a_{11}x_{1} + a_{12}x_{2}=b_{1}\\ a_{21}x_{1} + a_{22}x_{2}=b_{2} \end{alignedat}a11​x1​+a12​x2​=b1​a21​x1​+a22...

2024-05-07 19:56:03 930 1

原创 决策树学习

在第二波人工智能中,主要研究专家系统,决策树在专家系统中被广泛使用。流行的决策书算法有,ID3、C4.5(由ID3的作者改进而来)、CART(分类回归树,即既可以作分类,也可以做回归),这些算法的建树过程基本相似,都是从根节点开始向下分裂,所不同是选取的分裂特征和阈值的方法有所不同。选择方法:ID3:信息增益最大(对标签Y提供信息最多的特征),倾向于选择取值多的特征进行分裂。C4.5:ID...

2024-05-07 10:25:59 409 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除