线性代数—行列式

行列式的概念是从解线性方程组的问题中引入的。
对于二元线性一次方程组:
a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \begin{alignedat}{3} a_{11}x_{1} + a_{12}x_{2}=b_{1}\\ a_{21}x_{1} + a_{22}x_{2}=b_{2} \end{alignedat} a11x1+a12x2=b1a21x1+a22x2=b2
通过消元法,可得到解:
x 1 = b 1 a 22 − a 12 b 2 a 11 a 22 − a 12 a 21 x_{1} = \frac{b_{1}a_{22} - a_{12}b_{2}}{a_{11}a_{22}-a_{12}a_{21}} x1=a11a22a12a21b1a22a12b2
x 2 = a 11 b 2 − b 1 a 21 a 11 a 22 − a 12 a 21 x_{2}= \frac{a_{11}b_{2} - b_{1}a_{21}}{a_{11}a_{22}-a_{12}a_{21}} x2=a11a22a12a21a11b2b1a21
为了方便记忆,引入行列式记号来表示两个乘积的差:
∣ a b c d ∣ = b c − a d \begin{vmatrix}a&b\\c&d\end{vmatrix} = bc - ad acbd =bcad
该行列式遵循对角线法则。
问题:这里的消元法是否等同于后面章节讲到的用初等行、列变化的消元法。

克拉默法则:
设二元线性方程组 a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \begin{alignedat}{3} a_{11}x_{1} + a_{12}x_{2}=b_{1}\\ a_{21}x_{1} + a_{22}x_{2}=b_{2} \end{alignedat} a11x1+a12x2=b1a21x1+a22x2=b2的系数行列式 D = ∣ a 11 a 22 a 21 a 12 ∣ < > 0 D= \begin{vmatrix}a_{11}&a_{22}\\a_{21}&a_{12}\end{vmatrix} <> 0 D= a11a21a22a12 <>0则方程组有唯一的解: x 1 = D 1 D = ∣ b 1 a 12 b 2 a 22 ∣ ∣ a 11 a 12 a 21 a 22 ∣ x_{1}= \frac{D1}{D}=\frac{\begin{vmatrix}b_{1}&a_{12}\\b_{2}&a_{22}\end{vmatrix}}{\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}} x1=DD1= a11a21a12a22 b1b2a12a22
x 2 = D 2 D = ∣ a 11 b 1 a 21 b 2 ∣ ∣ a 11 a 12 a 21 a 22 ∣ x_{2}= \frac{D2}{D}=\frac{\begin{vmatrix}a_{11}&b_{1}\\a_{21}&b_{2}\end{vmatrix}}{\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}} x2=DD2= a11a21a12a22 a11a21b1b2
注意:D1与D2的行列式是将常数项代替对应未知数系数的行列式。

克拉默法则在微积分中的应用:对这里使用到的隐函数的概念及微分尚不是很清楚,留作以后补充。

三阶行列式与二阶行列式相似,只不过三阶行列式代表的式三元一次线性方程组。其克拉默也与二次线性方程组的克拉默法则相同。也遵循对角线法则。

三阶行列式在空间解析几何中的应用: 对这里使用到的空间解析几何尚不是很清楚,留作以后补充。

n阶行列式
定义:设有 n 2 n^2 n2个数 a i j a_{ij} aij(i,j = 1,2,…,n),它们构成一个有n行n列的n阶行列式
∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = ∑ p 1 , p 2 , . . . , p n M ( − 1 ) τ ( p 1 p 2 . . . p n ) a 1 p 1 a 2 p 2 . . . a n p n \begin{vmatrix}a_{11}&a_{12}&...&a_{1n}\\a_{21}&a_{22}&...&a_{2n}\\...&...&...&...\\a_{n1}&a_{n2}&...&a_{nn}\end{vmatrix} = \sum _{p{1},p{2},...,p{n}}^{M}(-1)^{\tau(p_{1}p_{2}...p_{n})} a_{1p1}a_{2p2}...a_{npn} a11a21...an1a12a22...an2............a1na2n...ann =p1,p2,...,pnM(1)τ(p1p2...pn)a1p1a2p2...anpn,其中 τ ( p 1 p 2 . . . p n ) \tau(p_{1}p_{2}...p_{n}) τ(p1p2...pn)是列标排列 p 1 p 2 . . . p n p_{1}p_{2}...p_{n} p1p2...pn的逆序数。这个n阶行列式表示行列式中一切不同行、不同列的n个元素(一共由n阶乘个这样的乘积)的乘积的代数和。各项所正负号按一下方式确定:当各项的行号都按自然数由小到大排列后,如果列标排列的逆序数为偶数(奇数),则该项带正号(负号)。即 a 1 p 1 a 2 p 2 . . . a n p n a_{1p1}a_{2p2}...a_{npn} a1p1a2p2...anpn带符号 ( − 1 ) τ ( p 1 p 2 . . . p n ) (-1)^{\tau(p_{1}p_{2}...p_{n})} (1)τ(p1p2...pn)

斜边为主对角线的上(下)三角形行列式等于其主对角线上的元素的乘积。
斜边为副对角线的上(下)三角形行列式等于 − 1 n ( n − 1 ) 2 a 1 n a 2 , n − 1 . . . a n 1 -1^\frac{n(n-1)}{2}a_{1n}a{2,n-1}...a_{n1} 12n(n1)a1na2,n1...an1
问题:应再对符号项进行理解。
推论:主对角线之外的元素都为0的行列式等于主对角线上元素之积。副对角线之外的元素都为0的行列式等于 − 1 n ( n − 1 ) 2 ( 副对角元素乘积 ) -1^\frac{n(n-1)}{2}(副对角元素乘积) 12n(n1)(副对角元素乘积)

自然数由小到大排列称为标准排列或自然排列,如果有一个较大的数排在一个较小数的前面(不一定相邻),就说这两个数产生了一个逆序,一个排列 p 1 p 2 . . . p n p_{1}p_{2}...p_{n} p1p2...pn中的逆序数的总数称为该排列的逆序数,记为 τ ( p 1 p 2 . . . p n ) \tau(p_{1}p_{2}...p_{n}) τ(p1p2...pn),逆序数为偶数(奇数),则称为偶排列(奇排列)。

行列式的行顺序定义:乘积因子按行号顺序排列,该因子所带正负号取决于列标排列的逆序数。
命题:对换一个排列的相邻元素,改变排列的奇偶性。如231546的逆序数是1+1+1=3,兑换1和5之后,新排列为235146,逆序数是1+1=2。
推论:奇次兑换排列的两个相邻元素,则排列的奇偶性改变,偶次兑换,奇偶性不变。

n阶行列式的等价定义(任意顺序定义)
定理:行列式是不同行不同列元素乘积的代数和,每一项的符号取决于行标排列逆序数与列标排列逆序数和的奇偶性,偶为正,奇为负。

n阶行列式的等价定义(列顺序定义)
定理:乘积因子按列标由小到大排列,正负号取决于行标排列的奇偶性。

注意: 行列式的计算量非常大,如10阶行列式展开式有10!=3,628,800项,每一项还有10个数的乘积。

行列式的性质和计算
行列式转置:将行列式D的元素的行标和列标互换,得到该元素在新行列式中的位置,这个新行列式就是原行列式的转置行列式,记为 D T D^T DT。行列式转置的效果,相当于依主对角线反转180度。设D= ∣ a i j ∣ , D T = ∣ b i j ∣ ,则 b i j = a j i \begin{vmatrix}a_{ij}\end{vmatrix},D^T=\begin{vmatrix}b_{ij}\end{vmatrix},则b_{ij}=a_{ji} aij DT= bij ,则bij=aji

行列式性质1
行列式和它的转置行列式相等。证明思路:任意乘积项的乘积因子构成,在原行列式和转置行列式都存在,行列互换后,其行标、列标的逆序数和也相同。这个性质很重要,它告诉我们:行列式中的行和列具有同等的地位。行列式的性质,对行成立,对列也成立,反之亦然。

行列式性质2
对换行列式两行(列),行列式变号。证明比较复杂,徐老师也省略了。
推论1:奇次对换两行(列),行列式变号,偶次兑换,行列式符号不变。
推论2:若行列式存在完全相同的两行(列),则行列式等于0。证明要点:对换该两行(列)后,行列式其实不变,但还要变符号,那么其值只能为0才满足这两项条件。

行列式性质3
行列式的某一行(列)中的所有元素都乘以同一个数k,等于用数k乘以此行列式。证明要点:乘进行列式某行(列)元素时,其不同行列的乘积项都含有k,可以将该k提取出来,就相当于k乘以行列式。
推论:行列式某一行(列)的公因子可以提到行列式外,也可以将行列式外的乘积因子乘到行列式的某一行或列。

行列式性质4
如果行列式的两行(列)元素成比例,则行列式等于零。证明要点:行列式两行(列)元素相同,则行列式为0;行列式一行(列)的公因子可以提到行列式外。

行列式性质5
如果行列式的某行(列)都是两个数之和,则该行列式可以分解为两个行列式之和,分解为的两个行列式的“两个数之和的那一行(列)”元素分别为加和项的一项,其余行(列)元素值均与原行列式相同位置的元素值相同。即:
∣ a b c + x d + y e f ∣ = ∣ a b c d e f ∣ + ∣ a b x y e f ∣ \begin{vmatrix}a&b\\c+x&d+y\\e&f\end{vmatrix} = \begin{vmatrix}a&b\\c&d\\e&f\end{vmatrix} + \begin{vmatrix}a&b\\x&y\\e&f\end{vmatrix} ac+xebd+yf = acebdf + axebyf
证明思路:原行列式按照不同行不同列展开,每一项都会包含一个“两数和”的乘积因子,再按照这个“两数和”展开,这些新的展开项对应这两个行列式,就是性质中分解为的两个行列式。

行列式性质6
把行列式某一行(列)的所有元素乘以同一个数k,然后加到另外一行(列),行列式不变。即:
∣ a b c d e f ∣ = ∣ a b c + k e d + k f e f ∣ \begin{vmatrix}a&b\\c&d\\e&f\end{vmatrix} = \begin{vmatrix}a&b\\c + ke&d + kf\\e&f\end{vmatrix} acebdf = ac+keebd+kff

证明思路:按照性质5展开,一个行列式为原行列式,另一个行列式为0。
注意:不是加到同一行,而是另外一行。

行列式的计算
为方便,引入几个行(列)变换的记号。
r i < — > r j r_{i} <—>r_{j} ri<>rj,交换行列式的两行。行列式变号。
r i ∗ k r_{i} * k rik,将第i行乘以k。(行列式乘以k)
r k + r j ∗ k r_{k} +r_{j} * k rk+rjk,将第j行乘以k加到第i行。(行列式不变)
以上符号将r替换为c,则为列变换。

行列式的计算1 化为三角形计算行列式
行列式可以通过一系列的行(列)变换,化为上三角形行列式,而三角形行列式的可根据对角线的元素求出。这式计算行列式的最主要方法。
问题:为什么必须式上三角行列式?根据之前的知识,只要是三角形行列式,其计算都比较简单,那么为什么必须式上三角行列式呢?
问题:讲义、视频上例子都是用 r k + r j ∗ k r_{k} +r_{j} * k rk+rjk的方式化行列式,根据之前的知识,这种变换行列式不变,那么要是使用的式另外两种变换,是不是就需要行列式会发生改变的问题?
遗留问题:爪形行列式的求解未掌握。
各行(列)元素之和相等计算行列式,也有一些可以遵循的方法,详见讲义。
结论:一个行列式总可以通过行变换 r k + r j ∗ k r_{k} +r_{j} * k rk+rjk、列变换 c k + c j ∗ k c_{k} +c_{j} * k ck+cjk化成上(下)三角形行列式,而这种变换可以保持行列式不变。有时为了方便,也会使用到另外两种变换。

行列式的计算2 分块行列式
例 证明 ∣ A 0 C B ∣ = ∣ A ∣ ∣ B ∣ \begin{vmatrix}A&0\\C&B\end{vmatrix} = \begin{vmatrix}A\end{vmatrix}\begin{vmatrix}B\end{vmatrix} AC0B = A B ,其中A、B、C为分块行列式。
可通过行变换 r k + r j ∗ k r_{k} +r_{j} * k rk+rjk、列变换 c k + c j ∗ k c_{k} +c_{j} * k ck+cjk将A、B分别化为下三角行列式,那么原行列式也会变为下三角行列式,由于这样的变换不会影响A、B的值,所以也不会影响 ∣ A 0 C B ∣ \begin{vmatrix}A&0\\C&B\end{vmatrix} AC0B 的值。
问题:A、B的值不影响,就不会影响 ∣ A 0 C B ∣ \begin{vmatrix}A&0\\C&B\end{vmatrix} AC0B 的值?理论依据式什么?对A、B的变换可是子区域的变换啊,之前从来没讲到过子区域行列式不变,大行列式就不会变。
∣ a 0 0 h 0 b g 0 0 f c 0 e 0 0 d ∣ \begin{vmatrix}a&0&0&h\\0&b&g&0\\0&f&c&0\\e&0&0&d\end{vmatrix} a00e0bf00gc0h00d 形式的行列式有对应的计算方法,这里未记录,详情可参考讲义。

行列式的导数
f ( x ) = ∣ a 11 ( x ) a 12 ( x ) a 21 ( x ) a 22 ( x ) ∣ f(x) = \begin{vmatrix}a_{11}(x)&a_{12}(x)\\a_{21}(x)&a_{22}(x)\end{vmatrix} f(x)= a11(x)a21(x)a12(x)a22(x) ,则f(x)的导数 d f ( x ) = ∣ d a 11 ( x ) d a 12 ( x ) a 21 ( x ) a 22 ( x ) ∣ + ∣ a 11 ( x ) a 12 ( x ) d a 21 ( x ) d a 22 ( x ) ∣ df(x) = \begin{vmatrix}da_{11}(x)&da_{12}(x)\\a_{21}(x)&a_{22}(x)\end{vmatrix} + \begin{vmatrix}a_{11}(x)&a_{12}(x)\\da_{21}(x)&da_{22}(x)\end{vmatrix} df(x)= da11(x)a21(x)da12(x)a22(x) + a11(x)da21(x)a12(x)da22(x)
推导思路:将原行列式展开,再求导,再整合。

行列式按行列展开
定义,在n阶行列式中,把 a i j a_{ij} aij所在的行和列划去,剩余的n-1阶行列式称为 a i j a_{ij} aij的余子式,记作 M i j M_{ij} Mij A i j = ( − 1 ) ( i + j ) ∗ M i j 为 a i j A_{ij}=(-1)^{(i+j)} * M_{ij}为a_{ij} Aij=(1)(i+j)Mijaij的代数余子式。

引理 设n阶行列式的第i行,除 a i j a_{ij} aij外都为零,则 D = a i j A i j D=a_{ij}A_{ij} D=aijAij

定理:行列式等于它的任何一行(列)的元素与它们的代数余子式的乘积之和,即
D = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n D=a_{i1}A_{i1} + a_{i2}A_{i2} + ... + a_{in}A_{in} D=ai1Ai1+ai2Ai2+...+ainAin
D = a 1 j A 1 j + a 2 j A 2 j + . . . + a n j A n j D=a_{1j}A_{1j} + a_{2j}A_{2j} + ... + a_{nj}A_{nj} D=a1jA1j+a2jA2j+...+anjAnj

证明思路:将要展开行(列)的所有元素变换为a+0+0+…+0的模式,然后再按该行的加和项拆分行列式,然后再按照上边的引理证明。

  • 6
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值