首先给出结论:(下述结论成立基于对 modmodmod 取模情况下)。
当 f(1)=1f(1)=1f(1)=1,fmod+1=ϵ(f(1))∗ff^{mod + 1} = \epsilon(f(1))*ffmod+1=ϵ(f(1))∗f,fmod=ϵ(f(1))f^{mod}=\epsilon(f(1))fmod=ϵ(f(1))。
当 f(1)!=1f(1)!=1f(1)!=1,f(1)p∗mod+1=ϵ(f(1)p)∗ff(1)^{p*mod + 1}=\epsilon(f(1)^p)*ff(1)p∗mod+1=ϵ(f(1)

本文探讨了狄利克雷卷积在模运算下的性质,特别是当f(1)等于或不等于1时的特殊情况。通过定义,得出fk*inv(k)=f,并解释了如何利用逆元求解f。结论指出,若g=fk,那么f=ginv(k),其中inv(k)是k的逆元,这对于解决相关算法问题具有指导意义。
最低0.47元/天 解锁文章
749

被折叠的 条评论
为什么被折叠?



