Codeforces gym102471C 狄利克雷卷积性质 + 狄利克雷卷积计算

本文探讨了狄利克雷卷积在模运算下的性质,特别是当f(1)等于或不等于1时的特殊情况。通过定义,得出fk*inv(k)=f,并解释了如何利用逆元求解f。结论指出,若g=fk,那么f=ginv(k),其中inv(k)是k的逆元,这对于解决相关算法问题具有指导意义。

       首先给出结论:(下述结论成立基于对 modmodmod 取模情况下)。

       当 f(1)=1f(1)=1f(1)=1fmod+1=ϵ(f(1))∗ff^{mod + 1} = \epsilon(f(1))*ffmod+1=ϵ(f(1))ffmod=ϵ(f(1))f^{mod}=\epsilon(f(1))fmod=ϵ(f(1))
       当 f(1)!=1f(1)!=1f(1)!=1f(1)p∗mod+1=ϵ(f(1)p)∗ff(1)^{p*mod + 1}=\epsilon(f(1)^p)*ff(1)pmod+1=ϵ(f(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值