Codeforces 585E 莫比乌斯反演 + 容斥

       给定 n ( 2 ≤ n ≤ 5 e 5 ) n(2\le n\le 5e5) n(2n5e5) 个数, 2 ≤ a i ≤ 1 e 7 2\le a_i\le 1e7 2ai1e7

       一次操作中,从数组 a a a 中选定一个 x x x,再从剩下的数中选出一个 gcd ⁡ > 1 \gcd>1 gcd>1 的非空集合 Y Y Y,使得所有选中的数的 gcd ⁡ = 1 \gcd=1 gcd=1,即 gcd ⁡ ( x , Y ) = 1 \gcd(x,Y)=1 gcd(x,Y)=1

       问有多少种这样的方案,答案 m o d   1 e 9 + 7 mod\ 1e9+7 mod 1e9+7

       我们尝试用公式表达出我们的所求:
∑ Y ⊆ U ∑ x ⊈ Y [ gcd ⁡ ( Y ) ≠ 1 ] [ gcd ⁡ ( x , Y ) = 1 ] \sum_{Y \subseteq U}\sum_{x\not\subseteq Y}[\gcd(Y)\neq1][\gcd(x,Y)=1] YUxY[gcd(Y)=1][gcd(x,Y)=1]

       当 gcd ⁡ ( Y ) = 1 \gcd(Y)=1 gcd(Y)=1 时, gcd ⁡ ( x , Y ) = 1 \gcd(x,Y)=1 gcd(x,Y)=1 必定满足,所以我们考虑用 gcd ⁡ ( x , Y ) = 1 \gcd(x,Y)=1 gcd(x,Y)=1 的所有情况减去 gcd ⁡ ( Y ) = 1 \gcd(Y)=1 gcd(Y)=1 的所有情况。

       即上式变为 :
∑ Y ⊆ U ∑ x ⊈ Y [ gcd ⁡ ( x , Y ) = 1 ] − ∑ Y ⊆ U ∑ x ⊈ Y [ gcd ⁡ ( Y ) = 1 ] \sum_{Y \subseteq U}\sum_{x\not\subseteq Y}[\gcd(x,Y)=1]-\sum_{Y \subseteq U}\sum_{x\not\subseteq Y}[\gcd(Y)=1] YUxY[gcd(x,Y)=1]YUxY[gcd(Y)=1]

       先考虑前半部分,当我们从一个 gcd ⁡ = 1 \gcd=1 gcd=1 的集合 Z ( ∣ Z ∣ > 1 ) Z(|Z|>1) Z(Z>1) 取出任何一个元素 x x x,都满足 gcd ⁡ ( x , Z − x ) = 1 \gcd(x,Z-x)=1 gcd(x,Zx)=1,也就是说 Z − x Z-x Zx 就是我们要找的集合 Y Y Y

       所以所有的集合产生的贡献就可以表述成:
∑ Y ⊆ U ∑ x ⊈ Y [ gcd ⁡ ( x , Y ) = 1 ] = ∑ ∣ Z ∣ > 1 , Z ⊆ U [ gcd ⁡ ( Z ) = 1 ] ∣ Z ∣ \sum_{Y \subseteq U}\sum_{x\not\subseteq Y}[\gcd(x,Y)=1]=\sum_{|Z|>1,Z\subseteq U}[\gcd(Z)=1]|Z| YUxY[gcd(x,Y)=1]=Z>1,ZU[gcd(Z)=1]Z

       对于一个集合 Z Z Z,贡献总共 ∣ Z ∣ |Z| Z 种构造 x x x Y Y Y 的方法。

       我们令 m m m a i a_i ai 中为 d d d 的倍数的数的数量。

∑ ∣ Z ∣ > 1 , Z ⊆ U [ gcd ⁡ ( Z ) = 1 ] ∣ Z ∣ = ∑ ∣ Z ∣ > 1 , Z ⊆ U ∑ d ∣ gcd ⁡ ( Z ) μ ( d ) ∣ Z ∣ = ∑ d = 1 m a x ( a i ) μ ( d ) ∑ ∣ Z ∣ = 2 m C m ∣ Z ∣ ∗ ∣ Z ∣ \begin{aligned}\sum_{|Z|>1,Z\subseteq U}[\gcd(Z)=1]|Z|&=\sum_{|Z|>1,Z\subseteq U}\sum_{d|\gcd(Z)}\mu(d)|Z| \\&=\sum_{d=1}^{max(a_i)}\mu(d)\sum_{|Z|=2}^{m}C_{m}^{|Z|}*|Z| \end{aligned} Z>1,ZU[gcd(Z)=1]Z=Z>1,ZUdgcd(Z)μ(d)Z=d=1max(ai)μ(d)Z=2mCmZZ

        ∑ ∣ Z ∣ = 2 m C m ∣ Z ∣ ∗ ∣ Z ∣ \sum_{|Z|=2}^{m}C_{m}^{|Z|}*|Z| Z=2mCmZZ 可以表述成 ∑ i = 2 n C n i ∗ i \sum_{i=2}^{n}C_{n}^i*i i=2nCnii,我们令 f ( n ) = ∑ i = 1 n C n i ∗ i f(n)=\sum_{i=1}^{n}C_{n}^i*i f(n)=i=1nCnii

       则上述式子写成:
∑ d = 1 m a x ( a i ) μ ( d ) ( f ( m ) − m ) \sum_{d=1}^{max(a_i)}\mu(d)(f(m)-m) d=1max(ai)μ(d)(f(m)m)

       根据组合数学公式 ( 1 + x ) n = ∑ i = 0 n C n i ∗ x i (1+x)^n=\sum_{i=0}^nC_n^i*x^i (1+x)n=i=0nCnixi,两边求导可得 ∑ i = 0 n C n i ∗ i = n ∗ 2 n − 1 \sum_{i=0}^{n}C_{n}^i*i=n*2^{n-1} i=0nCnii=n2n1 (而 i = 0 i=0 i=0 时无贡献可省去,即为上式)。

       则有 f ( x ) = 2 f ( x − 1 ) + 2 x − 1 f(x)=2f(x-1)+2^{x-1} f(x)=2f(x1)+2x1

       再考虑后半部分,道理类似,任意集合 Y Y Y,产生的贡献为 n − ∣ Y ∣ n-|Y| nY n − ∣ Y ∣ n-|Y| nY 即为 x x x 的数量:

∑ Y ⊆ U ∑ x ⊈ Y [ gcd ⁡ ( Y ) = 1 ] = ∑ Y ⊆ U [ gcd ⁡ ( Y ) = 1 ] ( n − ∣ Y ∣ ) = ∑ Y ⊆ U ∑ d ∣ gcd ⁡ ( Y ) μ ( d ) ∗ ( n − ∣ Y ∣ ) = ∑ d = 1 m a x ( a i ) μ ( d ) ( ( n ∗ ∑ ∣ Y ∣ = 1 m C m i ) − ( ∑ ∣ Y ∣ = 1 m C m i ∗ ∣ Y ∣ ) ) = ∑ d = 1 m a x ( a i ) μ ( d ) ( n ∗ ( 2 m − 1 ) − f ( m ) ) \begin{aligned}\sum_{Y \subseteq U}\sum_{x\not\subseteq Y}[\gcd(Y)=1]&=\sum_{Y \subseteq U}[\gcd(Y)=1](n-|Y|)\\&=\sum_{Y \subseteq U}\sum_{d | \gcd(Y)}\mu(d)*(n-|Y|)\\&=\sum_{d=1}^{max(a_i)}\mu(d)((n*\sum_{|Y|=1}^mC_m^i)-(\sum_{|Y|=1}^mC_m^i*|Y|))\\&=\sum_{d=1}^{max(a_i)}\mu(d)(n*(2^m-1)-f(m))\end{aligned} YUxY[gcd(Y)=1]=YU[gcd(Y)=1](nY)=YUdgcd(Y)μ(d)(nY)=d=1max(ai)μ(d)((nY=1mCmi)(Y=1mCmiY))=d=1max(ai)μ(d)(n(2m1)f(m))

       合并起来可得:

∑ d = 1 m a x ( a i ) μ ( d ) ( f ( m ) − m ) − ∑ d = 1 m a x ( a i ) μ ( d ) ( n ∗ ( 2 m − 1 ) − f ( m ) ) = ∑ d = 1 m a x ( a i ) μ ( d ) ( 2 f ( m ) − m − n ∗ ( 2 m − 1 ) ) \sum_{d=1}^{max(a_i)}\mu(d)(f(m)-m)-\sum_{d=1}^{max(a_i)}\mu(d)(n*(2^m-1)-f(m))=\sum_{d=1}^{max(a_i)}\mu(d)(2f(m)-m-n*(2^m-1)) d=1max(ai)μ(d)(f(m)m)d=1max(ai)μ(d)(n(2m1)f(m))=d=1max(ai)μ(d)(2f(m)mn(2m1))

       其中 f ( 1 ) = 1 , f ( x ) = 2 f ( x − 1 ) + 2 x − 1 f(1)=1,f(x)=2f(x-1)+2^{x-1} f(1)=1,f(x)=2f(x1)+2x1

       这里有一个小 t r i c k trick trick,我们不需要枚举 a i a_i ai 的因子来计算贡献。而是通过统计每个 a i a_i ai 的贡献,然后利用枚举 d d d 的同时,统计它的倍数的贡献(调和级数复杂度 n l o g n nlogn nlogn,如果枚举 a i a_i ai 的因子则是 n a i n\sqrt{a_i} nai 复杂度)

#include<bits/stdc++.h>
using namespace std;
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define endl '\n'
typedef long long LL;
const int maxn = 1e7 + 1;
const LL mod = 1e9 + 7;

int bit[maxn], f[maxn], d[maxn], mu[maxn], prime[maxn], cnt;
bool judge[maxn];

inline void init(){
    mu[1] = 1;
    for(int i = 2; i < maxn; i++){
        if(!judge[i]){
            prime[++cnt] = i;
            mu[i] = -1;
        }
        for(int j = 1, v; j <= cnt && (v = i * prime[j]) < maxn; j++){
            judge[v] = true;
            if(!(i % prime[j])) break;
            mu[v] = -mu[i];
        }
    }
    f[1] = 1;
    bit[0] = 1;
    bit[1] = 2;
    for(int i = 2; i < maxn; i++){
        f[i] = (2LL * f[i - 1] + bit[i - 1]) % mod;
        bit[i] = bit[i - 1] * 2LL % mod;
    }
}

int main(){
    IOS;
    init();
    int n, a;
    cin >> n;
    for(int i = 1; i <= n; i++){
        cin >> a;
        d[a]++;
    }
    int ans = mu[1] * (2LL * f[n] % mod - n - n * (bit[n] - 1LL) % mod) % mod;
    for(int i = 2; i < maxn; i++){
        if(mu[i]){
            int tol = 0;
            for(int j = i; j < maxn; j += i) tol += d[j];
            ans = (ans + mu[i] * (2LL * f[tol] % mod - tol - n * (bit[tol] - 1LL) % mod)) % mod;
        }
    }
    cout << (ans + mod) % mod << endl;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值