Engineering Dynamics 2 --- 动量和角动量

1 Introduction

第一个部分借助牛顿三大定律,已经能很好的研究粒子的运动规律了,接下来需要将粒子的运动规律扩展到物体的运动。

2 object motion

2.1 基础属性

  • 物体质心和质量
    在这里插入图片描述
    根据牛顿第三定律,多个物体组成的系统受到的力,等于外力之和。
    F 外 = ∑ m i d 2 r i d t 2 = ∑ d 2 ( m i r i ) d t 2 = d 2 ( ∑ m i r i ) d t 2 = d 2 ( ∑ M R ) d t 2 \begin{aligned} F_{外} &=\sum m_i \frac{d^2r_i}{dt^2} \\ & = \sum \frac{d^2 (m_i r_i)}{dt^2} \\ & = \frac{d^2 (\sum m_i r_i)}{dt^2} \\ & = \frac{d^2 (\sum M R)}{dt^2} \end{aligned} F=midt2d2ri=dt2d2(miri)=dt2d2(miri)=dt2d2(MR)
    根据系统质心的位移,即可以计算出系统所受的外力。

2.2 动能和动量

实际系统中无时无刻不在发生复杂的变化,物理学上通过能量守恒,投过这些表面的复杂的变化,研究背后的规律。

2.2.1 系统的动能和动量

  • 系统的动能
    d T = F d l d T = F v d t T = ∫ m d v d t v d t T = 0.5 m v 2 \begin{aligned} dT & =Fdl \\ dT & = Fvdt \\ T & = \int m\frac{dv}{dt}vdt\\ T & = 0.5mv^2 \end{aligned} dTdTTT=Fdl=Fvdt=mdtdvvdt=0.5mv2
    在动力学系统中,物体内部原子往往也做功,导致了系统的动能和系统之和,和外力做功不相同。
    但是系统的动量变化是等于外力的产生的冲量。
  • 单个粒子的冲量和动量
    F = m d v d t ∫ t 1 t 2 F d t = m v 2 − m v 1 (2-4) \begin{aligned} F &=m\frac{dv}{dt}\\ \int_{t1}^{t2}Fdt &=mv_2-mv_1 \end{aligned} \tag{2-4} Ft1t2Fdt=mdtdv=mv2mv1(2-4)
  • 系统的冲量和惯量
    结合公式(2-2)
    ∑ ∫ t 1 t 2 ( F i ) e x t d t = m i ( v i ) 2 − m i ( v i ) 1 ∑ ∫ t 1 t 2 ( F i ) e x t d t = m G ( v G ) 1 − m G ( v G ) 2 (2.5) \begin{aligned} \sum \int_{t1}^{t2}(F_i)_{ext} dt & =m_i (v_i)_2-m_i(v_i)_1 \\ \sum \int_{t1}^{t2}(F_i)_{ext} dt & = m_G(v_G)_1-m_G(v_G)_2 \end{aligned} \tag{2.5} t1t2(Fi)extdtt1t2(Fi)extdt=mi(vi)2mi(vi)1=mG(vG)1mG(vG)2(2.5)

2.2.2 角动量和转矩

  • 系统的转矩
    根据能量的观点,如果物体转过 Δ θ \Delta \theta Δθ,外力做功为[3]
    Δ W = F x Δ x + F y Δ y = − F x y Δ θ + F y x Δ θ = r ⃗ × F ⃗ Δ θ (2.6) \begin{aligned} \Delta W &= F_x \Delta x+F_y \Delta y \\ &=-F_xy\Delta \theta+F_yx\Delta \theta \\ & = \vec{r} \times \vec{F} \Delta \theta \end{aligned} \tag{2.6} ΔW=FxΔx+FyΔy=FxyΔθ+FyxΔθ=r ×F Δθ(2.6)
    根据几何学计算,
    Δ x = R Δ θ s i n ( θ ) = − R Δ θ y R = − y Δ θ (2.7) \begin{aligned} \Delta x &=R\Delta \theta sin(\theta) &=-R\Delta \theta \frac{y}{R} &=-y\Delta \theta \end{aligned} \tag{2.7} Δx=RΔθsin(θ)=RΔθRy=yΔθ(2.7)
    同理, Δ y = x Δ θ \Delta y=x\Delta \theta Δy=xΔθ
    根据公式2.6, 将转矩定义为:
    τ = r ⃗ × F ⃗ (2.8) \tau = \vec{r} \times \vec{F} \tag{2.8} τ=r ×F (2.8)
    在这里插入图片描述

  • 系统的角动量
    根据外力产生的冲量定义出来一般的动量,对于角动量,同样,从外转矩出发。
    d ( m o m e n t ) d t = τ = − F x y + F y x = − m d 2 x d t 2 y + m d 2 y d t 2 x = d ( − p x y + p y x ) d t (2.9) \begin{aligned} \frac{d(moment)}{dt} &=\tau \\ &=-F_xy+F_yx \\ &=-m\frac{d^2x}{dt^2}y+m\frac{d^2y}{dt^2}x\\ &=\frac{d(-p_xy+p_yx)}{dt} \end{aligned} \tag{2.9} dtd(moment)=τ=Fxy+Fyx=mdt2d2xy+mdt2d2yx=dtd(pxy+pyx)(2.9)
    定义角动量:
    H o = r ‾ × p ⃗ (2.10) \begin{aligned} H_o &=\overline{r} \times \vec{p} \end{aligned} \tag{2.10} Ho=r×p (2.10)

这个公式里 r ‾ \overline{r} r和坐标系的选择有很大关系。
在这里插入图片描述

  • 角动量和转矩与坐标系选取的关系
    根据定义:
    τ ‾ B / A = R ‾ B / A × F B / O = R ‾ B / A × m v ‾ ˙ B / O = d ( R ‾ B / A × m v ‾ B / O ) d t − R ˙ B / A × m v ‾ B / O = d ( R ‾ B / A × m v ‾ B / O ) d t − ( v ‾ B / O − v ‾ A / O ) × m v ‾ B / O = d ( H B / A ) d t + v ‾ A / O × P ‾ B / O (2.11) \begin{aligned} \overline{\tau}_{B/A} &=\overline{R}_{B/A}\times F_{B/O} \\ &=\overline{R}_{B/A}\times m\dot{\overline{v}}_{B/O} \\ &=\frac{d(\overline{R}_{B/A}\times m\overline{v}_{B/O})}{dt}-\dot{R}_{B/A} \times m\overline{v}_{B/O} \\ &=\frac{d(\overline{R}_{B/A}\times m\overline{v}_{B/O})}{dt}-(\overline{v}_{B/O}-\overline{v}_{A/O})\times m \overline{v}_{B/O} \\ & = \frac{d(H_{B/A})}{dt}+\overline{v}_{A/O}\times \overline{P}_{B/O} \end{aligned} \tag{2.11} τB/A=RB/A×FB/O=RB/A×mv˙B/O=dtd(RB/A×mvB/O)R˙B/A×mvB/O=dtd(RB/A×mvB/O)(vB/OvA/O)×mvB/O=dtd(HB/A)+vA/O×PB/O(2.11)

关于 H B / A = R ⃗ B / A × P ⃗ B / O H_{B/A}=\vec{R}_{B/A}\times \vec{P}_{B/O} HB/A=R B/A×P B/O,只是将参考点选择成A点,动量和能量都是相对于惯性坐标系设定的。
虽然公式已经计算出来,公式(2-10)最重要的作用是通过这个公式选择坐标系的位置。
只要选择的A点,满足 v ‾ A / O \overline{v}_{A/O} vA/O
在这里插入图片描述

2.2.3 动量的平移不变性和角动量的各向同性

在惯性坐标系上,动量和坐标系的选取无关;同样在惯性坐标系上,角动量则和坐标系的选取有直接的关系。
对机构上某点进行转矩校核时,往往将坐标系建在该点上。
在这里插入图片描述

  • 当坐标系建在o点
    h ‾ A / O = R ‾ A / O × P ‾ A / O = R R ^ × m R θ ˙ θ ^ = m R 2 θ ˙ k ^ \begin{aligned} \overline{h}_{A/O} &=\overline{R}_{A/O} \times \overline{P}_{A/O} \\ &=R\hat{R}\times mR\dot{\theta}\hat{\theta} \\ &=mR^2\dot{\theta}\hat{k} \end{aligned} hA/O=RA/O×PA/O=RR^×mRθ˙θ^=mR2θ˙k^
    计算o点的转矩有:
    τ A / O = m R 2 θ ¨ k ^ \tau_{A/O}=mR^2\ddot{\theta}\hat{k} τA/O=mR2θ¨k^
    这个转矩显然是让 θ \theta θ加速的动力源。
  • 当坐标系建在o1点
    h ‾ A / O = ( R R ^ + z k ^ ) × m R θ ˙ θ ^ = m R 2 θ ˙ k ^ − m z R θ ˙ R ^ \begin{aligned} \overline{h}_{A/O} &=(R\hat{R}+z\hat{k}) \times mR\dot{\theta}\hat{\theta} \\ &=mR^2\dot{\theta}\hat{k}-mzR\dot{\theta}\hat{R} \end{aligned} hA/O=(RR^+zk^)×mRθ˙θ^=mR2θ˙k^mzRθ˙R^
    计算o1点的转矩
    τ A / O = m R 2 θ ¨ k ^ − m z R θ ¨ R ^ − m z R θ ˙ 2 θ ^ = ( θ 加 速 动 力 源 ) + ( o 1 额 外 所 受 的 转 矩 ) \begin{aligned} \tau_{A/O} &=mR^2\ddot{\theta}\hat{k}-mzR\ddot{\theta}\hat{R}-mzR\dot{\theta}^2\hat{\theta} \\ &=(\theta加速动力源)+(o1额外所受的转矩) \end{aligned} τA/O=mR2θ¨k^mzRθ¨R^mzRθ˙2θ^=(θ)+(o1)

2.3 non-inertial frame下的fbd

2.3.1 平移运动

如果当前的参考系是非惯性系,是无法直接使用牛顿力学的,需要重新寻找一个全局坐标系,在新的坐标系上应用牛顿力学。
在这里插入图片描述

  • 以oXYZ坐标系进行分析
    在这里插入图片描述
    ∑ F e x t = N − m g = m a = m g 4 \sum F_{ext}=N-mg=ma=\frac{mg}{4} Fext=Nmg=ma=4mg
    很容易得到 N = 5 m g 4 N=\frac{5mg}{4} N=45mg
  • 以Axyz坐标系进行分析
    Axyz坐标系因为有加速度,将这个加速度用 虚 拟 力 \color{red}{虚拟力} 表示,Axyz就可以等效成惯性坐标系了。
    在这里插入图片描述
    fictious force和参考系的ma方向相反。即f=-ma。
    N = m g + f = 5 m g 4 N=mg+f=\frac{5mg}{4} N=mg+f=45mg

2.3.2 旋转运动

  • 旋转运动1: 有一根绳子牵引着小球运动,但是绳子可以通过桌子上的小孔进行伸缩。
    在这里插入图片描述
    方法1:计算物体B在惯性坐标系oXYZ下的加速度,然后再用牛顿第二定律。根据本系列1,可以计算B相对于OXYZ的加速度。
    a ‾ B / O = a ‾ A / O + ( θ ¨ A r B / A + 2 θ ˙ A r ˙ B / A ) θ ^ + ( r ¨ A / B − θ ˙ 2 r B / A ) R ^ \begin{aligned} \overline{a}_{B/O} = & \overline{a}_{A/O}+(\ddot{\theta}_{A}r_{B/A}+2\dot{\theta}_{A}\dot{r}_{B/A})\hat{\theta} \\ &+(\ddot{r}_{A/B}-\dot{\theta}^2r_{B/A})\hat{R} \end{aligned} aB/O=aA/O+(θ¨ArB/A+2θ˙Ar˙B/A)θ^+(r¨A/Bθ˙2rB/A)R^
    绘制物体B的fbd(free body diagram)如下图:
    在这里插入图片描述
    即根据牛顿力学,物体只在 R ^ \hat{R} R^这个方向上受力。
    θ ¨ A r B / A + 2 θ ˙ A r ˙ B / A = 0 F t = m ( r ¨ A / B − θ ˙ 2 r B / A ) \begin{aligned} \ddot{\theta}_{A}r_{B/A}+2\dot{\theta}_{A}\dot{r}_{B/A} &=0 \\ F_t=m(\ddot{r}_{A/B}-\dot{\theta}^2r_{B/A}) \end{aligned} θ¨ArB/A+2θ˙Ar˙B/AFt=m(r¨A/Bθ˙2rB/A)=0
    方法2:根据动量和角动量计算物体B的受力和转矩。
    根据动量和受力得出的关系如下:
    v A / O = R ˙ R ^ + R θ ˙ θ ^ ∑ F e x t = d P A / O d t = m R ¨ R ^ + m R ˙ θ ˙ θ ^ + m R ˙ θ ˙ θ ^ + m R θ ¨ θ ^ − m R θ ˙ 2 R ^ \begin{aligned} v_{A/O} & =\dot{R}\hat{R}+R\dot{\theta}\hat{\theta} \\ \sum F_{ext} & = \frac{dP_{A/O}}{dt} \\ &=m\ddot{R}\hat{R}+m\dot{R}\dot{\theta}\hat{\theta}+m\dot{R}\dot{\theta}\hat{\theta}+mR\ddot{\theta}\hat{\theta}-mR\dot{\theta}^2\hat{R} \end{aligned} vA/OFext=R˙R^+Rθ˙θ^=dtdPA/O=mR¨R^+mR˙θ˙θ^+mR˙θ˙θ^+mRθ¨θ^mRθ˙2R^
    根据角动量和转矩得出的关系如下:
    角动量公式:
    h B / A = R ‾ B / A × P ‾ B / O = R R ^ × ( m R ˙ R ^ + m R θ ˙ θ ^ ) = m R 2 θ ˙ k ^ \begin{aligned} h_{B/A}&=\overline{R}_{B/A} \times \overline{P}_{B/O} \\ &=R\hat{R} \times (m\dot{R}\hat{R}+mR\dot{\theta}\hat{\theta}) \\ &=mR^2\dot{\theta}\hat{k} \end{aligned} hB/A=RB/A×PB/O=RR^×(mR˙R^+mRθ˙θ^)=mR2θ˙k^
    根据角动量和转矩关系 ∑ τ e x t = d h B / A d t + v A / O × P B / O \sum \tau_{ext}=\frac{dh_{B/A}}{dt}+v_{A/O} \times P_{B/O} τext=dtdhB/A+vA/O×PB/O
    ∑ τ e x t = 2 m R R ˙ θ ˙ k ^ + m R 2 θ ¨ k ^ = 0 \begin{aligned} \sum \tau_{ext}=2mR\dot{R}\dot{\theta}\hat{k}+mR^2\ddot{\theta}\hat{k} =0 \end{aligned} τext=2mRR˙θ˙k^+mR2θ¨k^=0
    方法3:添加虚拟力后,将坐标系AXYZ同样当成惯性坐标系。
    在这里插入图片描述

2.3.3 系统的自由度

自由度计算公式为:
d o f = 6 n + 3 m − c dof=6n+3m-c dof=6n+3mc
n: rigid body, 需要考虑尺寸大小的物体,有平移和旋转运动
m: particle,不需要考虑尺寸大小的物体,只有平移运动
c: constraints

  • example1: 小球在斜面上运动,free body digram 如下图。
    计算摩擦力方向时,将物体的运动方向看成是正向运动
    计算constraints,有1个刚体,5个约束,dof=6*1-5=1
    y = y ˙ = y ¨ = 0 z = z ˙ = z ¨ = 0 x = − R θ θ x = 0 θ y = 0 \begin{aligned} y&=\dot{y}=\ddot{y}=0 \\ z&=\dot{z}=\ddot{z}=0 \\ x&=-R\theta \\ \theta_x &=0 \\ \theta_y &=0 \end{aligned} yzxθxθy=y˙=y¨=0=z˙=z¨=0=Rθ=0=0
    在这里插入图片描述

  • example2:
    y A = 0 x B = 0 z = z ˙ = z ¨ = 0 θ x = 0 θ y = 0 \begin{aligned} y_A&=0 \\ x_B&=0 \\ z&=\dot{z}=\ddot{z}=0 \\ \theta_x &=0 \\ \theta_y &=0 \end{aligned} yAxBzθxθy=0=0=z˙=z¨=0=0=0
    在这里插入图片描述

  • example3:
    将弹簧完全不受力时,作为坐标系原点。计算弹簧受力和阻尼力时,认为物体的运动是正的。
    在这里插入图片描述
    在这里插入图片描述

  • example4:
    假设小球在小车上滚动,球和小车没有摩檫力。
    计算小球的速度,通过非惯性坐标系速度计算
    o v G = o v A + A v G ∣ w A = 0 + w G × A R G = 3 m / s − 6 r a d / s ∗ 1.5 m + 0 = − 6 m / s \begin{aligned} ^ov_G &=^ov_A+^Av_G|_{w_A=0}+w_G\times ^AR_G \\ &=3m/s-6rad/s*1.5m+0=-6m/s \end{aligned} ovG=ovA+AvGwA=0+wG×ARG=3m/s6rad/s1.5m+0=6m/s
    计算小球的加速度,通过非惯性系坐标系加速度计算
    o a ‾ G = o a ‾ A + w ‾ G × ( w ‾ G × A R G ) + 2 w ‾ G A R G ˙ + w ˙ G A × R G = − 0.5 i ^ − 54 j ^ − 1.5 w ˙ G i ^ \begin{aligned} ^o\overline{a}_G &=^o\overline{a}_A+\overline{w}_G\times(\overline{w}_G\times ^AR_G)+2\overline{w}_G\dot{^AR_G}+\dot{w}_G^A\times R_G\\ &=-0.5\hat{i}-54\hat{j}-1.5\dot{w}_G\hat{i} \end{aligned} oaG=oaA+wG×(wG×ARG)+2wGARG˙+w˙GA×RG=0.5i^54j^1.5w˙Gi^
    在这里插入图片描述

  • example5:

    这是一个多粒子的案例,在导轨上运动的小车内部有个关节在做匀速旋转运动w,计算物体A和小球G的受力。

    实体有两个,自由度的限制有10个,系统一共有2个自由度。
    z A = z ˙ A = z ¨ A = 0 y A = y ˙ A = y ¨ A = 0 θ A x = 0 θ A y = 0 θ A z = 0 z G = z ˙ G = z ¨ G = 0 A x G = R c o s ( θ G ) A y G = R s i n ( θ G ) θ G x = 0 θ G y = 0 \begin{aligned} z_A &=\dot{z}_A &=\ddot{z}_A=0\\ y_A &=\dot{y}_A &=\ddot{y}_A=0\\ \theta_{Ax}&=0 \\ \theta_{Ay}&=0 \\ \theta_{Az}&=0 \\ z_G &=\dot{z}_G&=\ddot{z}_G=0 \\ ^Ax_G&=Rcos(\theta_G) \\ ^Ay_G&=Rsin(\theta_G) \\ \theta_{Gx}&=0 \\ \theta_{Gy}&=0 \end{aligned} zAyAθAxθAyθAzzGAxGAyGθGxθGy=z˙A=y˙A=0=0=0=z˙G=Rcos(θG)=Rsin(θG)=0=0=z¨A=0=y¨A=0=z¨G=0
    在这里插入图片描述
    对A进行受力分析

在这里插入图片描述
对球B的受力进行分析,直接通过牛顿第二定律
在这里插入图片描述
∑ F e x t − m g j ^ = m x ¨ A − m w G 2 R c o s ( θ G ) i ^ − m w G 2 R s i n ( θ G ) j ^ F T j = m g j ^ − m w G 2 R s i n ( θ G ) j ^ \begin{aligned} \sum F_{ext}-mg\hat{j} &=m\ddot{x}_A-mw_G^2Rcos(\theta_G)\hat{i}-mw_G^2Rsin(\theta_G)\hat{j}\\ F_{Tj}&=mg\hat{j}-mw_G^2Rsin(\theta_G)\hat{j} \end{aligned} Fextmgj^FTj=mx¨AmwG2Rcos(θG)i^mwG2Rsin(θG)j^=mgj^mwG2Rsin(θG)j^
再结合A,有
N A + m w G 2 R s i n ( θ G ) − m g = m A g N_A+mw_G^2Rsin(\theta_G)-mg=m_Ag NA+mwG2Rsin(θG)mg=mAg

2.3.4 fictious force

fictious force非常神奇的一点是人,可以感受到这些虚拟力,如人用绳子牵引小球转动,感觉到小球的离心力;乘坐电梯的时候能感受到电梯的失重和超重。
小车上向下的加速度的虚拟力和重力叠加而成的力,让水面发生改变。
在这里插入图片描述

References

[1] https://ocw.mit.edu/courses/mechanical-engineering/2-003sc-engineering-dynamics-fall-2011/index.htm
[2] Hibbeler, Russell C. Engineering Mechanics: Dynamics, Student Value Edition. Prentice Hall, 2015.
[3] Feynman, Richard P., Robert B. Leighton, and Matthew Sands. “The feynman lectures on physics; vol. i.” American Journal of Physics 33.9 (1965): 750-752.

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值