蓝桥杯 算法训练 K好数 动态规划

题目描述

资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
如果一个自然数N的 K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求 L位 K进制数中K好数的数目。
例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。

输入格式
输入包含两个正整数,K和L。

输出格式
输出一个整数,表示答案对1000000007取模后的值。
样例输入
4 2
样例输出
7
数据规模与约定
对于30%的数据,KL <= 106;

对于50%的数据,K <= 16, L <= 10;

对于100%的数据,1 <= K,L <= 100。

这道题利用动态规划的思想,利用数组dp[i][j]表示在第i位取数j的情况下K好数的数目,数组行数i的上限为位数L,列数j的上限为K-1,计算dp[i][j]只需将前一行列数与当前位置的列数不等于1的数组元素相加即可,所得结果即为当前位取j时可能得到的所有结果。

代码实现

以下为实现代码及注释。

#include <iostream>
using namespace std;

int n, m;
int main() {
	int k, l;
	long long dp[101][101];//用dp[i][j]存储第i位放置数字j的时候k好数的数量
	cin >> k >> l;
	if (k == 1)//当k=1时代表1进制,没有可能的结果,直接输出0
		cout << 0;
	else {
		//第一行dp[1][j]初始化为1(1位数)
		for (int i = 0; i < k; i++)
			dp[1][i] = 1;
		//将数组第2行开始初始化为0
		for (int i = 2; i <= l; i++)
			for (int j = 0; j < k; j++)
				dp[i][j] = 0;
		for (int i = 2; i <= l; i++) {
			for (int j = 0; j < k; j++) {
				//从0开始遍历上一行数组
				for (int a = 0; a < k; a++) {
					//当当前位所取的数j与a相差不等于1时,说明当前位取j在前一位取a的情况是K好数
					if (abs(a - j) != 1) {
						dp[i][j] += dp[i - 1][a];
						dp[i][j] %= 1000000007;
						//加上可能的K好数的数目并模1000000007防止溢出
					}
				}
			}
		}
		long long sum = 0;
		for (int i = 1; i < k; i++) {
			sum += dp[l][i];
			sum %= 1000000007;
		}
		cout << sum;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值