1.连接xshell和xftp
点击Xshell图标进入
首次进入点击文件->新建
更换自己名称,其他一样即可
用户名和密码都是group组号,记住用户名,记住密码
使用完毕必须主动退出登录
exit
2.新建自己的文件夹
以后所有自己的东西存放在这里
使用mkdir 文件名 当前文件下创建
mkdir 文件名
也可以使用xftp使用右键
进入xftp
3.上传项目
将项目下载到自己的本地电脑后拖拽进自己服务器新建的文件夹
也可以使用命令直接在服务器使用命令行下载
4.新建虚拟环境
conda create -n 虚拟环境名称 python=版本号
激活虚拟环境
conda activate 虚拟环境名称
进入自己的虚拟环境
以后进入服务器首先激活自己的虚拟环境,避免冲突
(注意,不是必要步骤)删除虚拟环境(不使用或有问题可以删除虚拟环境)
conda remove --name <环境名称> --all
5.安装实验所需库
我的项目需要库
激活虚拟环境状态下
现在安装pytorch
一定在下面这个网站找到自己项目所需版本
https://pytorch.org/get-started/previous-versions/
这三个版本需要对应,目前服务器的cuda版本为12.8,小于该版本都可以兼容
(由于该项目pytorch版本太低,我选择了2.5.0版本,一般可以兼容,最好和项目要求一致,便于对比实验结果)
conda install pytorch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 pytorch-cuda=12.4 -c pytorch -c nvidia
查看是否安装
conda list
(显示当前所在虚拟环境中的安装好的库)
安装Numpy库
conda install numpy=版本号
默认最新版
安装Scipy库
Conda Scipy=版本号
默认最新版
conda list
查看已激活虚拟环境中安装的库
6.运行代码
ls
查看当前文件夹下文件
cd ..
返回上一层
cd 文件夹名
进入下一层文件夹名
cd 文件夹1/文件夹2
进入下一层文件夹名的下一层文件夹名
进入main.py(名字是自己的文件名)项目运行文件所在文件夹
逐步进入
使用python main.py
(名字是自己的文件名) 运行即可
7.查看gpu等信息占用情况
(1)系统指令(不用下载)
nvidia-smi
如果希望自动刷新这个命令,可以输入如下命令:
nvidia-smi -l
如上方式会显示历史信息和当前信息,如果只想看当前信息,则可以执行如下命令实现每1s刷新一次:
watch -n 1 nvidia-smi
(2)第三方python库命令(需要在自己的虚拟环境中下载,功能多,显示全)
conda activate 自己的虚拟环境名
pip install nvitop
安装后,输入命令
nvitop -m full
8.Pycharm连接远程服务器进行代码调试
使用pycharm时最好进行本地映射
(调试后,长时间跑代码,建议使用上面的方式,可将工作放在服务器上进行)
在pycharm中打开自己的项目
点击左上角file
选择setting
第一次选New输入
后续选择existing,直接选择自己的即可
点击next,
现在进行更改interpreter,点击三个点,一步步打开文件夹,找到自己虚拟环境下的python3
1.接下来更改Sync folders(可以不更改,会自动映射的服务器的tmp文件夹下,直接跳转下面1.5步骤即可)
1.1更改步骤
1.2提前在服务器上自己想要放项目的文件夹下创建一个空的文件夹(不手动设计映射,不用执行本步骤)
1.3一步步找到,新建的文件夹,点击ok
1.4将两个地址进行保存后续使用,完成(不手动设计映射,不用执行本步骤)
D:/PycharmProjects/pythonProject3
/home/group3/220******/test1
选择需要执行的.py文件,右键run即可
观察3处是否为自己的服务器映射位置,如果是,不用再进行以下步骤,如果不是则需要手动执行下面步骤。改为映射位置即可
1.5
点击3后面的小文件夹图标,找到本地的项目中,将要运行的py文件(不手动设计映射,执行本步骤,后直接ok)
1.6上图第5步如下(不手动设计映射,不用执行本步骤)
之前复制的映射
D:/PycharmProjects/pythonProject3
/home/group3/220****/test1
点击OK完成
调试后,自动同步项目
点击运行即可