推荐系统
文章平均质量分 52
ihan1001
实践过,才展示
展开
-
【03】推荐系统-常用数据集介绍
MovieLens 100K:包含大约10万条用户对电影的评分,涵盖了大约1000部电影。MovieLens 10M:包含大约1000万条用户对电影的评分,涵盖了约1.1万部电影。MovieLens 20M:包含大约2000万条用户对电影的评分,涵盖了约2.7万部电影。MovieLens 1M:包含大约100万条用户对电影的评分,涵盖了大约6000部电影。MovieLens 25M:包含大约2500万条用户对电影的评分,涵盖了约6万部电影。原创 2024-04-12 15:11:57 · 496 阅读 · 0 评论 -
彻底搞懂梯度下降
小批量梯度下降法是批量梯度下降法和随机梯度下降法的折衷,也就是对于m个样本,我们采用x个样本来迭代,1原创 2024-04-12 15:10:12 · 474 阅读 · 0 评论 -
矩阵分解【00】
而矩阵分解算法将 m×n 维的矩阵R分解为 m× k 的用户矩阵 U 和 k×n 维的物品矩阵 S 相乘的形式。其中, m 为用户的数量,n为物品的数量,k为隐向量(Latent Factor)的维度。而Funk-SVD完美的解决了SVD的不足,它仅将矩阵分解为两个矩阵,分解的目标是让分解后的两个矩阵乘积得到的评分矩阵和原始矩阵更拟合,也就是说与原始评分的残差最小。2.如图,评分矩阵中,每一行u代表每个用户,每一列s代表每个物品,矩阵中的数字代表着用户对物品的打分。SVD 需要原始的共现矩阵是稠密的。原创 2024-04-11 09:41:31 · 349 阅读 · 0 评论