- 博客(6)
- 收藏
- 关注
原创 task01基础知识
task 1 数据基础 文章目录task 1 数据基础1.随机数的应用pi的估计2.作业 1.随机数的应用 pi的估计 P((X,Y)落在圆内)=P(X2+Y2≤1)=π/4 P((X,Y)落在圆内) = P(X^2+Y^2\le1)=\pi/4 P((X,Y)落在圆内)=P(X2+Y2≤1)=π/4 def pi_estimate(n): ''' n为投点的数量 ''' n_rand_X = np.random.uniform(-1.0,1.0,n) n_rand_
2021-07-13 23:24:56 167
原创 Task5 模型融合
智慧海洋竞赛实践 专题五 文章目录智慧海洋竞赛实践 专题五1. 模型融合概述1.1 简单加权融合(1)平均法-Averaging(2)投票法-voting1.2 stacking/blending(1)堆叠法-stacking(2)混合法 - blending2. 代码实现2.1 导入包2.2 数据准备2.3 模型融合 1. 模型融合概述 1.1 简单加权融合 (1)平均法-Averaging 对于回归问题,一个简单直接的思路是取平均。将多个模型的回归结果取平均值作为最终预测结果,进而把多个弱分类器荣
2021-04-23 17:12:09 387
原创 Task4 模型建立
智慧海洋竞赛实践 专题三 文章目录智慧海洋竞赛实践 专题三一、模型介绍1. 随机森林步骤一:导入需要的工具库步骤二:对数据预处理步骤三:训练模型步骤四:预测结果步骤五:模型评估2. lightGBM步骤一:导入需要的工具库步骤二:对数据预处理步骤三:训练模型步骤四:预测结果步骤五:模型评估3. Xgboost模型步骤一:导入需要的工具库步骤二:对数据预处理步骤三:训练模型步骤四:预测结果步骤五:模型评估二、模型实战步骤一:导入需要的工具库步骤二:对数据预处理步骤三:训练模型步骤四:预测结果 一、模型介绍
2021-04-22 12:37:08 173
原创 Task3 特征工程
智慧海洋竞赛实践 专题三 文章目录智慧海洋竞赛实践 专题三1. 特征工程概述1.1 特征构建1.2 特征提取和特征选择2. 数据预处理2.1 读入数据2.2 基本处理3. 基础特征3.1 距离计算3.2 时间划分3.3 速度划分3.4 方位划分3.5 描述性统计3.6 坐标与角度偏移指标计算3.7 分箱4. embedding特征4.1 简介4.2 使用场景4.3 Word2Vec4.4 NMF提取文本的主题分布 1. 特征工程概述 特征工程大体可分为3部分,特征构建、特征提取和特征选择。 1.1 特征
2021-04-20 15:50:49 692 2
原创 Task2 数据分析
智慧海洋竞赛实践 专题二 文章目录智慧海洋竞赛实践 专题二1. 背景介绍2.数据概述2.1 读入数据2.1.1 准备工作2.1.2 读入函数1. 训练集2. 测试集2.2 数据概览3.数据处理3.1缺失值判断3.2异常值判断4.可视化展示4.1 轨迹可视化4.2 坐标可视化4.3 速度与方向4.3.1 速度与方向可视化4.3.2 速度与方向数据分布图4.3.3 速度与方向数据分位图4.3.4 速度与方向数据热力图 1. 背景介绍 本专题主要介绍探索性数据分析(EDA),通过数据分析,可以熟悉数据集的基本
2021-04-16 18:09:49 518
原创 Task1 地理数据分析常用工具
智慧海洋竞赛实践 专题一 文章目录智慧海洋竞赛实践 专题一Task1 地理数据分析常用工具1.1 Shapely库库简介1.1.1 空间数据模型1.1.2 几何对象的一些功能特性1.1.3 Python操作1. 导入包2. Point点的构建点的可视化3. LineStrings线的构建线的相关计算DouglasPucker算法的实现4. LinearRings5. Polygon6. 集合7. 几何对象关系8. 与numpy和python数组之间的关系1.2 geopandas库库简介1.3 Foli
2021-04-14 17:36:10 964 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人