Hadoop序列化(含案例)

本文介绍了Hadoop序列化的概念,并详细讲解了如何自定义Bean对象实现Writable接口进行序列化,包括实现接口、反序列化、序列化方法的重写,以及在MapReduce程序中的应用案例,强调了在key中使用自定义bean时需要实现Comparable接口的重要性。
摘要由CSDN通过智能技术生成

1. 序列化概述

在这里插入图片描述
在这里插入图片描述

2. 自定义Bean对象实现序列化接口(Writable)

在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口。
具体实现bean对象序列化步骤如下7步。
(1)必须实现Writable接口(implements Writable)
(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造

public FlowBean() {
   
	super();
}

(3)重写序列化方法

@Override
public void write(DataOutput out) throws IOException {
   
	out.writeLong(upFlow);
	out.writeLong(downFlow);
	out.writeLong(sumFlow);
}

(4)重写反序列化方法

@Override
public void readFields(DataInput in) throws IOException {
   
	upFlow = in.readLong();
	downFlow = in.readLong();
	sumFlow = in.readLong();
}

(5)注意反序列化的顺序和序列化的顺序完全一致
(6)要想把结果显示在文件中,需要重写toString(),可用”\t”分开,方便后续用。
(7)如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce框中的Shuffle过程要求对key必须能排序。

@Override
public int compareTo(FlowBean o) {
   
	return this.sumFlow > o.getSumFlow() ? -1 : 1;
}

3. 序列化案例实操(MapReduce程序)

(1)编写流量统计的Bean对象

package flowsum;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class FlowBean implements Writable {
   

    private long upFlow;//上行流量
    private long downFlow;//下行流量
    private long sumFlow;//总流量


    //空参构造,为了后续反射用
    public FlowBean
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值