二叉树的详解

树形结构

概念

结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为6

树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6

叶子结点或终端结点:度为0的结点称为叶结点; 如上图:BCHI...等节点为叶结点

双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:AB的父结点

孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点;  如上图:BA的孩子结点

根结点:一棵树中,没有双亲结点的结点;如上图:A

结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推

树的高度或深度:树中结点的最大层次; 如上图:树的高度为4

树的以下概念不是经常用,只需了解

非终端结点或分支结点:度不为0的结点; 如上图:DEFG...等节点为分支结点

兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:BC是兄弟结点

堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:HI互为兄弟结点

结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先

子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙

森林:由mm>=0)棵互不相交的树组成的集合称为森林

二叉树

概念

        一棵二叉树是结点的一个有限集合,该集合为空或者是由一个根节点加上两棵别称为左子树右子树的二叉树组成。

从上图可以看出:

  1. 二叉树不存在度大于2的结点
  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的:

大自然的奇观:

两种特殊的二叉树

        满二叉树:  一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵二叉树的层数为K,且结点总数是-1,则它就是满二叉树

        完全二叉树:  完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n 个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0n-1的结点一 一对应时称之为完  全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

二叉树的性质

        若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有(i>0)个结点

        若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是-1(k>=0)

        对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0n21

        具有n个结点的完全二叉树的深度k为  上取整

        对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i   的结点有

        a)若i>0双亲序号:(i-1)/2i=0i为根结点编号,无双亲结点

        b)若2i+1<n,左孩子序号:2i+1,否则无左孩子

        c)若2i+2<n,右孩子序号:2i+2,否则无右孩子

二叉树的存储

        二叉树的存储结构分为:顺序存储类似于链表的链式存储

        二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:

// 孩子表示法
class Node {
    int val; // 数 据 域
    Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
    Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}

// 孩子双亲表示法
class Node {
    int val; // 数 据 域
    Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
    Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
    Node parent; // 当前节点的根节点
}

二叉树的基本操作

前置说明

        在二叉树的基本操作前,需先要创建一棵二叉树,然后才能进行其相关的基本操作。此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,再反过头再来研究二叉树真正的创建方式。

public class 
    BinaryTree{ 
        public static class BTNode{
            BTNode left; 
            BTNode right; 
            int value;
            BTNode(int value){ 
                this.value = value;
            }
        }

    private BTNode root;

    public void createBinaryTree(){ 
        BTNode node1 = new BTNode(1); 
        BTNode node1 = new BTNode(2); 
        BTNode node1 = new BTNode(3); 
        BTNode node1 = new BTNode(4); 
        BTNode node1 = new BTNode(5); 
        BTNode node1 = new BTNode(6);

        root = node1; 
        node1.left = node2; 
        node2.left = node3; 
        node1.right = node4; 
        node4.left = node5; 
        node5.right = node6;
    }
}

        注意:上述代码并不是创建二叉树的方式。 再看二叉树基本操作前,再回顾下二叉树的概念,二叉树是:空树 / 非空:根节点,根节点的左子树、根节点的右子树组成的。

 

从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。

二叉树的遍历

前中后序遍历

        学习二叉树结构,最简单的方式就是遍历。所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结  点均做一次且仅做一次访问访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加  1)。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。

        在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按  照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。如果N代表根节点,L代表根节点的  左子树,R代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:

NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点--->根的左子树--->根的右子树。(根左右)

LNR:中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树。(左根右)

LRN:后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点。(左右根)

        这幅图主要表示了前序递归遍历

前序遍历结果:1 2 3 4 5 6

中序遍历结果:3 2 1 5 4 6

后序遍历结果:3 1 5 6 4 1

层序遍历

        除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

二叉树的基本操作

// 获取树中节点的个数
int size(Node root);

// 获取叶子节点的个数
int getLeafNodeCount(Node root);

// 子问题思路-求叶子结点个数

// 获取第K层节点的个数
int getKLevelNodeCount(Node root);

// 获取二叉树的高度
int getHeight(Node root);

// 检测值为value的元素是否存在
Node find(Node root, int val);

//层序遍历
void levelOrder(Node root);

// 判断一棵树是不是完全二叉树
boolean isCompleteTree(Node root);

相关 OJ 题目

检查两颗树是否相同。OJ链接

另一颗树的子树。OJ链接

二叉树最大深度 OJ链接

判断一颗二叉树是否是平衡二叉树。OJ链接

对称二叉树。OJ链接

二叉树的构建及遍历。OJ链接

二叉树的分层遍历 。OJ链接

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先 。OJ链接

二叉搜索树转换成排序双向链表。OJ链接

根据一棵树的前序遍历与中序遍历构造二叉树。 OJ链接

根据一棵树的中序遍历与后序遍历构造二叉树([课堂不讲解,课后完成作业])。OJ链接

二叉树创建字符串。OJ链接

二叉树前序非递归遍历实现 。OJ链接

二叉树中序非递归遍历实现。OJ链接

二叉树后序非递归遍历实现。OJ链接

  • 36
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
叉树的前序遍历和中序遍历可以确定一棵二叉树,因此可以通过已知的前序遍历和中序遍历来构建出一棵二叉树。而求解二叉树的后序遍历则需要使用递归来实现。 具体的算法流程如下: 1. 如果前序遍历序列和中序遍历序列为空,则返回空节点; 2. 取前序遍历序列的第一个元素作为根节点; 3. 在中序遍历序列中找到根节点,确定左子树和右子树的中序遍历序列; 4. 根据左子树的中序遍历序列和前序遍历序列递归构建左子树; 5. 根据右子树的中序遍历序列和前序遍历序列递归构建右子树; 6. 将根节点加入后序遍历序列中; 7. 返回根节点。 下面是代码实现: ``` #include <iostream> #include <vector> using namespace std; // 二叉树节点结构体 struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} }; // 根据前序遍历序列和中序遍历序列构建二叉树 TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) { if (preorder.empty() || inorder.empty()) { return nullptr; } // 取前序遍历序列的第一个元素作为根节点 int root_val = preorder[0]; TreeNode* root = new TreeNode(root_val); // 在中序遍历序列中找到根节点,确定左子树和右子树的中序遍历序列 int root_idx = 0; for (int i = 0; i < inorder.size(); i++) { if (inorder[i] == root_val) { root_idx = i; break; } } vector<int> left_inorder(inorder.begin(), inorder.begin() + root_idx); vector<int> right_inorder(inorder.begin() + root_idx + 1, inorder.end()); // 根据左子树的中序遍历序列和前序遍历序列递归构建左子树 vector<int> left_preorder(preorder.begin() + 1, preorder.begin() + 1 + left_inorder.size()); root->left = buildTree(left_preorder, left_inorder); // 根据右子树的中序遍历序列和前序遍历序列递归构建右子树 vector<int> right_preorder(preorder.begin() + 1 + left_inorder.size(), preorder.end()); root->right = buildTree(right_preorder, right_inorder); return root; } // 后序遍历二叉树 void postorder(TreeNode* root, vector<int>& ans) { if (root != nullptr) { postorder(root->left, ans); postorder(root->right, ans); ans.push_back(root->val); } } int main() { vector<int> preorder = {1, 2, 4, 5, 3, 6}; vector<int> inorder = {4, 2, 5, 1, 3, 6}; TreeNode* root = buildTree(preorder, inorder); vector<int> ans; postorder(root, ans); for (int i = 0; i < ans.size(); i++) { cout << ans[i] << " "; } cout << endl; return 0; } ``` 输出结果为: ``` 4 5 2 6 3 1 ``` 这就是二叉树的后序遍历序列。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值