科研必备——上手 ML Visuals-神经网络画图神器

MLVisuals是一个包含超过100个可定制神经网络图形的资源库,旨在帮助科研人员和学习者提升深度学习论文和报告的视觉效果。该项目提供模型输入、卷积、神经元、操作等基本组件,以及抽象背景和渐变背景等多种设计元素。用户可以免费用于论文、博客和演示文稿,以创建专业的深度学习模型示意图。社区贡献丰富,包括Transformer和经典模型如MLP、卷积网络的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ML Visuals-神经网络画图神器

这里向大家推荐一个深度学习领域许多SCI作者都在使用的画图神器:

ML Visuals

该项目受到广泛关注,迄今已收获 7.2K Star,专为解决神经网络画图问题设计!

项目地址:dair-ai/ml-visuals: 🎨 ML Visuals contains figures and templates which you can reuse and customize to improve your scientific writing. (github.com)

Currently, we have over 100 figures (all open community contributions). You are free to use the visuals in your machine learning presentations or blog posts.

ML Visuals 现在包含了 100 多个可用的自定义图形,使用者可以在任何论文、博客、PPT 中使用这些资源。

How to use?

本质上,这是一个放在Google上的PPT,你可以直接下载使用。

地址:https://docs.google.com/presentation/d/11mR1nkIR9fbHegFkcFq8z9oDQ5sjv8E3JJp1LfLGKuk/edit?usp=sharing

如果打不开的话,这里有我在百度网盘上的备份:

链接:https://pan.baidu.com/s/1y9ji5pa-vKL8r5mPiT6V3A
提取码:yhv3

内容梳理

这里,我们一起看一下这个PPT都有什么可用的东西:

Basic ML Visuals

这里是搭建结构的基础组件,如:

模型输入(Embeddings)

image-20220924172555593

卷积与特征图:

image-20220924172653724

神经元

image-20220924172712233

网络中的操作与运算

image-20220924173716595

应用上述组件搭建的Transformer结构示例:

image-20220924173811789

MLP示例:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-njPfUzmt-1664024085055)(C:\Users\YuetianW\AppData\Roaming\Typora\typora-user-images\image-20220924173916003.png)]

卷积示例:

image-20220924173952890

Abstract backgrounds

主题背景

image-20220924174035356

Gradient Backgrounds

渐变背景

注意。
渐变背景显示了一些可用于背景的色彩主题的灵感和想法
本节使用的例子的灵感来自https://uigradients.com

Community Contributions

社区贡献的一些示例:

Conv操作:

image-20220924174259566

image-20220924174440606

过拟合&欠拟合

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RuCZB6Km-1664024085060)(C:\Users\YuetianW\AppData\Roaming\Typora\typora-user-images\image-20220924174531576.png)]

SGD&BGD

image-20220924174552323

Miscellaneous

U-Net

image-20220924174644372

Inception blocks

image-20220924174708598

DenseNet

image-20220924174756668

结语

总的来说,ML visuals为我们提供了使用PPT绘图来描述深度学习模型结构的众多组件,有兴趣的小伙伴可以马上试着用它来搭建一些经典的模型(ViT、ResNeXt、DERT······)来练练手鸭!

### 解析 Import Error 的常见原因 当遇到 `ImportError: cannot import name 'Generic'` 错误时,通常意味着尝试从模块中导入的对象不存在或无法访问。此问题可能由多种因素引起: - 版本不兼容:不同库之间的版本冲突可能导致此类错误。 - 安装缺失:目标库未正确安装或路径配置有误。 - 导入语句不当:可能存在循环依赖或其他语法层面的问题。 ### 针对 Generic 类型的具体解决方案 对于特定于 `Generic` 的情况,考虑到 Python 中 `Generic` 是 typing 模块的一部分,在处理该类别的 ImportError 时可采取如下措施[^1]: #### 方法一:确认typing模块可用性 确保环境中已安装标准库中的 typing 模块,并且其版本支持所使用的特性。可以通过以下命令验证: ```bash python -c "from typing import Generic; print(Generic)" ``` 如果上述命令执行失败,则可能是由于 Python 或者相关扩展包的版本过低造成的。此时应考虑升级至更高版本的解释器以及对应的开发工具链。 #### 方法二:调整导入方式 有时直接通过顶层命名空间来获取所需组件会更稳定可靠。修改代码以采用这种做法可能会解决问题: ```python from collections.abc import Iterable # 如果是迭代器相关接口 from typing import TypeVar, Protocol # 对于协议和泛型定义 T = TypeVar('T') class MyContainer(Protocol[T]): ... ``` 注意这里并没有显式提到 `Generic` ,而是利用了更为基础的数据结构抽象基类或是其他替代方案实现相同功能[^2]。 #### 方法三:排查环境变量设置 检查系统的 PYTHONPATH 和虚拟环境配置是否正常工作。任何异常都可能导致某些第三方软件包找不到必要的资源文件而引发类似的错误提示。建议清理并重建项目专属的工作区以便排除干扰项的影响。 #### 示例修正后的代码片段 假设原始代码试图这样引入 `Generic` : ```python from some_module import Generic # 可能导致 ImportError ``` 改为遵循官方文档推荐的方式后变为: ```python from typing import Generic # 正确的做法 ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yuetianw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值