机器学习课后题——贝叶斯

+第四章 贝叶斯分类器  

1. 简述朴素贝叶斯的优缺点.

答:

    朴素贝叶斯的主要优点有:

  1. 算法比较简单,易于实现。
  2. 快速,易于训练。
  3. 朴素贝叶斯模型有稳定的分类效率。
  4. 对小规模的数据表现很好,能处理多分类任务,适合增量式训练,尤其是数据量超出内存时,可以一批批的去增量训练。
  5. 对缺失数据不太敏感。

朴素贝叶斯的主要缺点有:   

  1. 如果输入变量是相关的,则会出现问题。
  2. 需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。
  3. 通过先验和数据来决定后验的概率从而决定分类,所以分类决策存在一定的错误率。
  4. 对输入数据的表达形式很敏感。

2. 试由下表的训练数据学习一个朴素贝叶斯分类器并确定 x=(2,S)T

 的类标记y. 表中X(1)  , X(2)  为特征,取值的集合分别为A1={1,2,3} A2={S,M,L} , Y为类标记,YC=1,-1.

 

 

3. 考虑下表中的数据集

 

 

(a) 估计条件概率P(A|+),P(B|+),P(C|+),P(A|-),P(B|-)和P(C|-).

(b) 根据(a)中的条件概率,使用朴素贝叶斯方法预测测试样本(A=0,B=1,C=0)的类标号

(c) 使用m估计方法(p=1/2且m=4)估计条件概率

(d) 同(b),使用(c)中的条件概率

(e) 比较估计概率的两种方法。哪一种更好?为什么?

 

4. 给定如下图所示的一个贝叶斯网络

(a) 请写出x1,x2,…,x7 的联合概率分布

(b) x1x2 是否相互独立?

(c) x6x7在给定 x4的条件下是否相互独立?

 

 

5. 下图给出了表中的数据集对应的贝叶斯信念网络(假设所有的属性都是二元的)。

(a) 画出网络中每个结点对应的概率表。

(b) 使用贝叶斯网络计算P(引擎=差,空调=不可用)。

贝叶斯信念网络

 

数据集

答:答案见下图:

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yuetianw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值