机器学习降维算法一:PCA (Principal Component Analysis)

PCA(主成分分析)是最常用的线性降维方法,通过线性投影最大化数据映射后的方差,保留数据点特性。PCA在数据预处理中起到关键作用,但可能不适用于分类任务,因为它不考虑数据区分性。其他降维方法如LDA和非线性方法更注重数据区分或局部性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言:

机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式。 y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。f可能是显式的或隐式的、线性的或非线性的。

当然还有一大类方法本质上也是做了降维,叫做feature selection,目的是从原始的数据feature集合中挑选一部分作为数据的表达。

目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据。

之所以使用降维后的数据表示是因为:

(1)在原始的高维空间中,包含有冗余信息以及噪音信息,在实际应用例如图像识别中造成了误差,降低了准确率;而通过降维,我们希望减少冗余信息所造成的误差,提高识别(或其他应用)的精度。

(2)或者希望通过降维算法来寻找数据内部的本质结构特征。

(3)通过降维来加速后续计算的速度

(4)还有其他很多目的,如解决数据的sparse问题

在很多算法中,降维算法成为了数据预处理的一部分,如PCA。事实上,有一些算法如果没有降维预处理,其实是很难得到很好的效果的。

 

如果你需要处理数据,但是数据原来的属性又不一定需要全部保留,那么PCA也许是一个选择。

 

主成分分析算法(PCA)

Principal Component Analys

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值