问题描述:
在任意一棵二叉树中,度为0的结点(即叶子结点)总是比度为2的结点多一个。上面这句话是从哪推理出来的呢?
问题解答:
定义和性质
- 二叉树的节点度:在二叉树中,一个节点的度是指它的子节点的数量。度可以是0(叶子节点),1,或者2。
- 内部节点(非叶节点):度为1或2的节点。
- 叶子节点:度为0的节点。
推导过程
-
总节点数的关系: 在一棵二叉树中,设:
为度为0的节点数(叶子节点数)。
-
为度为1的节点数。
-
为度为2的节点数。
- N为二叉树的总节点数。
-
边的关系: 在二叉树中,每个度为2的节点贡献2条边,每个度为1的节点贡献1条边,而度为0的节点贡献0条边。总的边数 𝐸E 可以表示为:
-
节点与边的关系: 在一棵有 𝑁N 个节点的树中,总的边数 𝐸E 为 𝑁−1N−1(因为树是一个连通无环图,有 𝑁N 个节点和 𝑁−1N−1 条边)。 因此,有:
-
节点总数的表示: 总的节点数 N 也可以表示为:
-
综合上述关系: 将节点总数 𝑁N 的表示代入到边的关系中:
-
简化方程:
𝑛0+𝑛1+𝑛2−1=𝑛1+2𝑛2n0+n1+n2−1=n1+2n2
简化后得到:
结论
从上面的推导可以得出,在任意一棵二叉树中,度为0的节点(叶子节点)总是比度为2的节点多一个。因此,这句话是通过二叉树节点和边的基本性质推导出来的。