‘BINARY‘,‘BINARY_INV‘,‘TRUNC‘,‘TOZERO‘,‘TOZERO_INV‘这5种简单阈值有什么区别呢?

问题描述:

'BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV'这5种简单阈值有什么区别呢?

import cv2
import numpy as np
from matplotlib import pyplot as plt
img=cv2.imread('logo5.jpg',0)
ret,thresh1=cv2.threshold(img,127,255,cv2.THRESH_BINARY)
ret,thresh2=cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
ret,thresh3=cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
ret,thresh4=cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
ret,thresh5=cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)
titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
for i in range(6):
    plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])
plt.show()

问题解答:

这五种简单阈值化方法的主要区别在于如何处理像素值,并根据设定的阈值(在你的例子中是127)将其分类。以下是每种方法的具体说明:

  1. THRESH_BINARY:

    • 将像素值大于阈值(127)的像素设为最大值(255),小于或等于阈值的像素设为0。
    • 结果是黑白图像,白色表示高于阈值的区域。
  2. THRESH_BINARY_INV:

    • THRESH_BINARY 相反。
    • 将像素值小于或等于阈值(127)的像素设为最大值(255),大于阈值的像素设为0。
    • 结果是反转的黑白图像,白色表示低于阈值的区域。
  3. THRESH_TRUNC:

    • 将像素值大于阈值(127)的像素值截断为阈值(127),小于或等于阈值的像素保持不变。
    • 结果是原图的部分保留,而高于阈值的部分会被削减到阈值。
  4. THRESH_TOZERO:

    • 将像素值小于或等于阈值(127)的像素设为0,而大于阈值的像素保持不变。
    • 结果是只保留高于阈值的区域,低于阈值的区域变为黑色。
  5. THRESH_TOZERO_INV:

    • THRESH_TOZERO 相反。
    • 将像素值大于阈值(127)的像素设为0,而小于或等于阈值的像素保持不变。
    • 结果是只保留低于阈值的区域,高于阈值的区域变为黑色。

这些方法可用于图像分割、特征提取等多种计算机视觉任务。

##############################################

THRESH_TRUNC: 将像素值大于阈值(127)的像素值截断为阈值(127),小于或等于阈值的像素保持不变。 结果是原图的部分保留,而高于阈值的部分会被削减到阈值。 这个高于阈值的会被设置成白色吗?

THRESH_TRUNC 中,高于阈值的像素不会被设置成白色,而是会被截断到阈值的值。在你的例子中,所有像素值大于127的像素都会被设置为127,而小于或等于127的像素保持不变。

因此,结果中高于阈值的区域将显示为灰色(127),而低于阈值的区域保持其原始值。这样,你会得到一个包含原始像素值和一些被截断的像素的图像。

##################################################

THRESH_BINARY_INV种的INV全称是什么呢?

THRESH_BINARY_INV 中的 INVInverted 的缩写,意思是“反转”。这种阈值处理方法将像素值进行反转:像素值大于阈值的部分被设置为0(黑色),而像素值小于或等于阈值的部分被设置为最大值(255,白色)。因此,这种方法可以得到反转的二值图像。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神笔馬良

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值