问题描述:
'BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV'这5种简单阈值有什么区别呢?
import cv2
import numpy as np
from matplotlib import pyplot as plt
img=cv2.imread('logo5.jpg',0)
ret,thresh1=cv2.threshold(img,127,255,cv2.THRESH_BINARY)
ret,thresh2=cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
ret,thresh3=cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
ret,thresh4=cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
ret,thresh5=cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)
titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
for i in range(6):
    plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])
plt.show()

问题解答:
这五种简单阈值化方法的主要区别在于如何处理像素值,并根据设定的阈值(在你的例子中是127)将其分类。以下是每种方法的具体说明:
- 
	
THRESH_BINARY:
- 将像素值大于阈值(127)的像素设为最大值(255),小于或等于阈值的像素设为0。
 - 结果是黑白图像,白色表示高于阈值的区域。
 
 - 
	
THRESH_BINARY_INV:
- 与 
THRESH_BINARY相反。 - 将像素值小于或等于阈值(127)的像素设为最大值(255),大于阈值的像素设为0。
 - 结果是反转的黑白图像,白色表示低于阈值的区域。
 
 - 与 
 - 
	
THRESH_TRUNC:
- 将像素值大于阈值(127)的像素值截断为阈值(127),小于或等于阈值的像素保持不变。
 - 结果是原图的部分保留,而高于阈值的部分会被削减到阈值。
 
 - 
	
THRESH_TOZERO:
- 将像素值小于或等于阈值(127)的像素设为0,而大于阈值的像素保持不变。
 - 结果是只保留高于阈值的区域,低于阈值的区域变为黑色。
 
 - 
	
THRESH_TOZERO_INV:
- 与 
THRESH_TOZERO相反。 - 将像素值大于阈值(127)的像素设为0,而小于或等于阈值的像素保持不变。
 - 结果是只保留低于阈值的区域,高于阈值的区域变为黑色。
 
 - 与 
 
这些方法可用于图像分割、特征提取等多种计算机视觉任务。
##############################################
THRESH_TRUNC: 将像素值大于阈值(127)的像素值截断为阈值(127),小于或等于阈值的像素保持不变。 结果是原图的部分保留,而高于阈值的部分会被削减到阈值。 这个高于阈值的会被设置成白色吗?
在 THRESH_TRUNC 中,高于阈值的像素不会被设置成白色,而是会被截断到阈值的值。在你的例子中,所有像素值大于127的像素都会被设置为127,而小于或等于127的像素保持不变。
因此,结果中高于阈值的区域将显示为灰色(127),而低于阈值的区域保持其原始值。这样,你会得到一个包含原始像素值和一些被截断的像素的图像。
##################################################
THRESH_BINARY_INV种的INV全称是什么呢?
THRESH_BINARY_INV 中的 INV 是 Inverted 的缩写,意思是“反转”。这种阈值处理方法将像素值进行反转:像素值大于阈值的部分被设置为0(黑色),而像素值小于或等于阈值的部分被设置为最大值(255,白色)。因此,这种方法可以得到反转的二值图像。
                  
                  
                  
                  
                    
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
                    
              
            
                  
					4436
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
					
					
					


            