翻译上面的英文,先整段翻译,然后逐句解释翻译之后的中文。

问题描述:

env.constraints.action_rate.penalty_weight: sets how much weight the action rate penalty plays in the total reward. This is the hyperparameter we tune the most to get the behavior we want. You can set the penalty weight of all other constraints listed in the combo_* training files. For instance, in our default training config combo_go2ARX5_pickle_reaching_extreme.yaml, we inherit constraints for action_rate, joint_acc, collision joint_limit, torque, even_mass_distribution, feet_under_hips, aligned_body_ee, and root_height from combo_go2ARX5_pickle_reaching.yaml. You can set the penalty weight of any of those with env.constraints.{}.penalty_weight where {} is the constraint name. 翻译上面的英文,先整段翻译,然后逐句解释翻译之后的中文。

问题解答:

整段翻译

env.constraints.action_rate.penalty_weight:设置动作速率惩罚在总奖励中的权重。这是我们调整最多的超参数,以获得我们想要的行为。您可以在 combo_* 训练文件中为所有其他约束设置惩罚权重。例如,在我们默认的训练配置文件 combo_go2ARX5_pickle_reaching_extreme.yaml 中,我们继承了来自 combo_go2ARX5_pickle_reaching.yaml 的以下约束:action_rate(动作速率)、joint_acc(关节加速度)、collision(碰撞)、joint_limit(关节限制)、torque(力矩)、even_mass_distribution(质量均匀分布)、feet_under_hips(脚在髋关节下方)、aligned_body_ee(身体末端对齐)以及 root_height(根部高度)。
您可以使用 env.constraints.{}.penalty_weight 来设置其中任何一个约束的惩罚权重,其中 {} 是约束名称。


逐句解释

  1. env.constraints.action_rate.penalty_weight:设置动作速率惩罚在总奖励中的权重。
    👉 这是一个参数,专门用来控制动作速率的惩罚项在总奖励中所占的比重。

  2. 这是我们调整最多的超参数,以获得我们想要的行为。
    👉 由于动作速率(即机器人行动的快慢、变化幅度)对控制稳定性、节能、流畅度等影响较大,因此在训练中,调整这个参数往往是最频繁的。

  3. 您可以在 combo_* 训练文件中为所有其他约束设置惩罚权重。
    👉 combo_* 指一类以 "combo_" 开头的训练配置文件(如 combo_go2ARX5_pickle_reaching_extreme.yaml),这些文件中定义了多种约束条件的惩罚权重。

  4. 例如,在我们默认的训练配置文件 combo_go2ARX5_pickle_reaching_extreme.yaml 中,我们继承了来自 combo_go2ARX5_pickle_reaching.yaml 的以下约束:
    👉 这里介绍了某个默认训练配置文件的内容,它从另一个文件中“继承”了一系列约束。

  5. action_rate(动作速率)、joint_acc(关节加速度)、collision(碰撞)、joint_limit(关节限制)、torque(力矩)、even_mass_distribution(质量均匀分布)、feet_under_hips(脚在髋关节下方)、aligned_body_ee(身体末端对齐)以及 root_height(根部高度)。
    👉 这些都是可以调整惩罚权重的约束项,每个约束都有其对应的控制作用。例如:

  • action_rate 控制动作变化的平稳度
  • joint_acc 控制关节加速度,避免机器人动作太猛
  • collision 监测碰撞并施加惩罚
  • joint_limit 限制关节角度,避免机器人关节超出物理范围
  • torque 控制电机输出力矩,避免电机过载
  1. 您可以使用 env.constraints.{}.penalty_weight 来设置其中任何一个约束的惩罚权重,其中 {} 是约束名称。
    👉 这个语法表示,{} 替换成任意一个约束名(如 action_ratejoint_acc 等)即可单独调整该项的惩罚权重。

通俗理解

这个参数相当于一个“惩罚力度调节器”,在训练模型时,如果机器人某方面的动作不符合预期(如关节动得太快、撞墙等),通过调大惩罚权重来减少这种不良行为。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神笔馬良

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值