什么是“最佳线性逼近”?

问题描述:

什么是“最佳线性逼近”?

问题解答:

简单说,就是:

在某一点附近,用一条(或一个)线性函数,尽可能准确地近似原来的复杂函数。

这条线性函数就是最接近原来函数的小范围内的变化趋势。
也就是说,在这一点附近,原来那个复杂的函数的变化,可以差不多用这个线性函数来描述了。


为什么叫“最佳”?

因为:

  • 在所有可能的线性近似里,

  • 这种用导数(或雅可比矩阵)推出来的方法,

  • 误差是最小的!

  • 没有比它更接近的线性方式了。

这就是“最佳”的意思。


举个简单的例子(单变量函数)

比如单变量函数:

f(x)=sin⁡(x)

在 x=0 附近,我们可以用一条直线 f(x)≈x来近似它。

为什么?

  • 因为sin(x)在x=0处的导数是1。

  • 导数告诉我们函数在这一点的瞬时变化率

  • 所以在x=0附近,sin⁡(x)的变化趋势,跟x本身几乎一样。

这条线 f(x)=x 就是sin(x)在x=0点的最佳线性逼近

如果你画图看,就会发现:
x=0附近,sin(x)和x几乎重合!


多变量向量函数的情况

如果函数有很多输入、很多输出,
那么“最佳线性逼近”就不再是一条直线,
而是一个矩阵运算——也就是雅可比矩阵,它告诉你:

输入各个方向微小变化时,输出各个方向分别怎么变化。

也就是说,在某个点附近,
你可以用一个线性映射(矩阵乘法)
来近似描述复杂函数的微小变化。


终极一句话总结

✅ “最佳线性逼近”就是:

在某个点附近,用一个导数(单变量)雅可比矩阵(多变量)来线性近似原函数,
这个近似在小范围内是
最准确、误差最小
的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神笔馬良

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值