python中shape[-1],shape[0],shap[1]

博客详细解释了shape属性在数组中的作用,强调不应将shape[0]、shape[1]简单理解为行和列,而应视为数组的维度。通过示例a=array([[[1,2,3],[4,5,6]]])说明,a.shape[0]、a.shape[1]、a.shape[2]分别对应第一、第二和第三维的元素数量。shape[-1]则表示最后一维的大小。内容着重于数组维度的理解和应用。

关于shape[0]、shape[1]

具体内容可以看此链接:传送门
这里在把评论部分摘录一下,以便自己记忆(传送门中的评论,有侵权联系我)。
注意:
不能单纯地将shape[0]、shape[1]理解为行列数,这会导致误解,应该将shape[0]理解为第一维,shape[1]理解为第二维,同理还有shape[2]、shape[3]等等 。
举个栗子就是:a=array( [ [ [1,2,3] , [4,5,6] ] ] ),这是个三维数组,a.shape[0]=1, a.shape[1]=2, a.shape[2]=3。结果如下:
在这里插入图片描述

具体而言,什么叫一维,二维,三维。括号从外到里,分别是一维,二维,三维

关于shape[-1]

就是最后一维的数量。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值