系统理解RAG (Retrieval-Augmented Generation)原理

引言:传统的大语言模型在处理某些任务时,如开放域问答,可能会生成不准确或不相关的内容。这是因为模型依赖于内部训练的知识,而这些知识是有限的且无法动态实时更新,尤其是在面对复杂或特定领域的问题时,模型生成的回复存在“幻觉”问题。

RAG (Retrieval-Augmented Generation),即检索增强生成模型,是一种结合了检索(Retrieval)和生成(Generation)的模型框架,它的核心思想是在生成回答之前,先从大量文档中检索出与问题最相关的信息,然后将这些信息与问题一起输入到生成模型中,以生成更加准确和丰富的回答。让机器在生成回答时能够利用到外部的丰富知识,用于提升语言模型在特定任务上的表现。

假如你和朋友玩猜谜游戏,你的朋友问你:“埃菲尔铁塔在哪个城市?”如果你不确定答案,你可能会查阅地图或搜索引擎来找到答案。这个查找过程就类似于RAG模型的检索阶段。找到答案“巴黎”之后,你可能会用一个完整的句子回答你的朋友:“埃菲尔铁塔位于法国的首都巴黎。 ”这个用信息构建答案的过程就像RAG模型的生成阶段。通过这种方式,你不仅给出了一个简单的答案,而且提供了额外的信息,使得回答更加完整和有趣。RAG模型正是通过这种检索和生成的结合来处理复杂的自然语言处理任务。

RAG技术的诞生,是为了解决传统生成模型在需要广泛知识支持的任务上的局限性。传统模型通常只依赖于训练时学习到的知识,如GPT-3、BERT等,虽然在很多任务上表现出色,但它们的知识库通常受限于训练数据。而RAG通过引入检索阶段,让模型能够访问到最新的、外部的知识,从而显著提升了回答的质量和相关性。与传统的生成模型相比,RAG模型的优势在于:

  • 提高准确性与时效性:通过检索最新的、特定领域的信息,RAG能够生成基于最新知识和上下文的回答,减少因依赖过时或泛化信息而导致的错误。

  • 减少模型幻觉:传统生成模型可能因为仅依赖于其训练数据而产生“幻觉”,即生成与事实不符的内容。RAG通过检索外部权威信息,能够有效减少这种现象,提高答案的可信度。

  • 增强上下文适应性:它能够根据查询动态地获取信息,适应不同场景和需求,使得生成的内容更加贴合实际的上下文环境。

  • 灵活性与可扩展性:RAG模型不仅限于特定类型的任务或数据,可以根据不同的应用场景调整检索源和生成策略,易于扩展到新的领域和数据集。

  • 减轻数据需求:通过检索外部知识,RAG能够在不增加大量训练数据的情况下增强模型的能力,这对于资源有限或需要快速适应新知识的场景尤为重要。

RAG 组成结构和工作流程

检索器(Retriever) 接收到一个查询或请求时,RAG首先利用检索模型从一个大型外部知识库(如文档集合、数据库或网络资源)中检索与查询最相关的信息片段。这些信息片段通常包含了回答问题所需的关键数据或事实。通常有以下步骤:

  • 查询编码:首先将用户的问题转换为一个向量形式,这通常使用与索引相同的编码器完成。
  • 相似性计算:计算问题向量与数据库中所有文档片段向量之间的相似度,常用的相似性度量方法有余弦相似度、欧氏距离等。
  • 排序与选择:根据相似度得分对文档片段进行排序,并选取排名最高的一些片段作为与问题最相关的文档。

生成器(Generator) 则是利用检索到的文档和输入查询,生成最终的回答或输出。生成器接收到的问题输入不仅仅是原始问题,还包括了检索到的文档片段。这个组合的输入为生成器提供了更丰富的上下文信息,使得生成器能够在理解问题的基础上,利用这些相关文档中的信息生成更加准确、详尽的答案。

RAG(检索增强生成)的工作流程大致可以分为以下几个步骤:
1.用户查询:流程开始于用户提出一个问题或发出一个请求,这可以是任何形式的文本输入。

2.信息检索

  • 用户的查询被传递给检索器。
  • 检索器使用预先构建的向量索引对知识库中的文档或信息片段进行相似性搜索。这通常涉及使用像DPR这样的技术,将查询转换成向量形式,并与存储的文档向量比较,找出最相关的几个文档或段落。
  • 相关度最高的几个文档(也称为候选文档或检索单元)被选中作为后续生成步骤的输入。

3.上下文整合

  • 被检索到的相关文档或信息片段被整理和格式化,以便生成器可以理解并利用这些信息。
  • 这些文档可能会被直接拼接、总结或者以其他方式融入到生成器的输入中,作为生成回答的上下文。

4.生成响应:生成器模型(如T5、BERT)接收包含查询和检索到的上下文信息作为输入。利用这些输入,生成器模型生成一个详细的、基于检索到的知识的回答。这个回答不仅仅是简单地复制检索到的信息,而是综合这些信息并以自然语言的形式表达出来,确保回答既准确又具有流畅性。

5.输出响应:最终,生成器产生的回答被返回给用户,完成了从查询到响应的整个流程。

整个流程通过结合检索的精确性和生成的灵活性,使得RAG模型能够提供更为精准和内容丰富的回答,尤其适合那些需要依赖大量背景知识或具体细节的场景。

检索器的技术原理

  1. 向量化表示(Vector Representation):首先,RAG检索器需要将文档集中的每个文档转换为数值向量。这通常通过使用诸如Word2Vec、BERT或其变体等预训练语言模型来实现,这些模型能够将文本转换为固定大小的向量,这些向量捕捉了文本的语义信息。

  2. 索引构建(Indexing):一旦文档被转换为向量,下一步是构建一个索引,这通常是一个倒排索引(Inverted Index),它将词汇与包含这些词汇的文档列表相关联。在向量空间中,可以是一个基于向量的索引结构。

  3. 查询理解(Query Understanding):当用户提交查询时,RAG检索器也需要将查询转换为与文档相同空间中的向量。这样,检索器可以使用相同的语言模型来理解查询的语义内容,并将其表示为向量。

  4. 相似性度量(Similarity Measurement):检索器使用余弦相似度或其他相似性度量方法来比较查询向量与文档集中的文档向量。这有助于确定哪些文档向量与查询向量最接近,即最相关。

  5. 检索(Retrieval):基于相似性度量,检索器从文档集中检索出最相关的文档或文档片段。这通常涉及选择相似度最高的前N个文档。

  6. 排名(Ranking):检索到的文档可能还需要根据它们的相关性进行排名。这可以通过更复杂的排名模型来实现,该模型可能考虑文档的新鲜度、权威性或用户偏好等。

假设我们有一个包含大量科学论文的文档集,并且我们想要回答用户关于“量子计算”的问题。

  1. 向量化表示:我们使用BERT模型将每篇论文的摘要和关键词转换为向量。

  2. 索引构建:我们构建一个向量索引,将与“量子计算”相关的词汇与包含这些词汇的论文向量相关联。

  3. 查询理解:用户提交的查询“什么是量子计算?”被BERT模型转换为查询向量。

  4. 相似性度量:检索器计算查询向量与文档集中每个文档向量之间的余弦相似度。

  5. 检索:检索器检索出与查询向量相似度最高的几篇论文。通常使用以下技术来实现:BM25:一种经典的信息检索算法,通过计算查询词与文档的匹配程度来检索文档。 Dense Retrieval:如DPR(Deep Probabilistic Retrieval),使用深度学习模型来理解查询和文档的语义,进行更准确的检索。

  6. 排名:检索到的论文根据它们的相关性和其他因素(如引用次数)进行排名,并返回最相关的几篇。

生成器的技术原理

  1. 预训练语言模型

    • RAG生成器通常基于一个预训练的大型语言模型,如BERT、GPT等。这些模型已经在大量的文本数据上进行了训练,能够捕捉语言的复杂模式和结构。
  2. 检索增强

    • 在RAG系统中,生成器不仅依赖于自身的预训练知识,还通过检索来增强其生成能力。检索器从文档集中找到与用户查询相关的文档,并将这些文档作为上下文信息提供给生成器。
  3. 上下文融合

    • 生成器将检索到的文档与用户查询融合,形成一个丰富的上下文。这个过程可以通过简单的拼接、加权或更复杂的交互机制(如注意力机制)来实现。
  4. 生成过程

    • 在给定的上下文中,生成器通过解码过程生成文本。这个过程可以是自回归的,即每个词的生成依赖于之前生成的词,也可以是非自回归的,即同时生成整个句子。
  5. 优化目标

    • 生成器的目标是最大化生成文本的准确性和流畅性。这通常通过最小化损失函数来实现,损失函数衡量生成文本与真实文本之间的差异。
  6. 微调

    • 在预训练的基础上,生成器还可以通过微调来适应特定的任务或领域。微调涉及在特定任务的数据上进一步训练模型,使其更好地适应生成任务的需求。

假设我们有一个RAG系统,用于回答用户关于科学问题的问题:

  1. 预训练语言模型:我们使用一个预训练的BERT模型作为生成器的基础。BERT已经在大量的科学文献和普通文本上进行了训练,能够理解复杂的科学概念。

  2. 检索增强:用户提交一个问题:“光合作用是如何进行的?”RAG检索器从科学文献数据库中检索出与光合作用相关的文档。

  3. 上下文融合:检索到的文档摘要与用户查询一起构成生成器的输入上下文。例如,检索到的文档摘要可能是:“光合作用是植物、藻类和某些细菌通过捕捉太阳能将二氧化碳和水转化为葡萄糖和氧气的过程。”

  4. 生成过程:生成器利用这个上下文,开始生成回答:“光合作用主要发生在植物的叶绿体中,它包括两个主要阶段:光反应和暗反应。在光反应中,叶绿素吸收光能并将其转化为化学能,产生ATP和NADPH。在暗反应中,这些能量被用来将二氧化碳转化为葡萄糖。”

  5. 优化目标:生成器的目标是生成一个准确、流畅且易于理解的回答。通过最小化损失函数,生成器不断调整其输出,直到生成一个高质量的回答。

  6. 微调:如果我们发现生成器在回答某些类型的科学问题时表现不佳,我们可以在相关的科学文献上对生成器进行微调,提高其在这些领域的性能。

检索到的文档与输入查询如何融合

检索到的文档与输入查询通过拼接的方式进行融合。具体来说,检索到的文档会被拼接到输入查询的后面,形成一个新的输入序列,这个序列会被输入到生成器中,以便生成器能够利用这些信息生成答案,确保了生成器在生成答案前能够“看到”与问题相关的外部知识。通常通过以下方式实现:

  • 拼接:将检索到的文档内容与输入查询直接拼接在一起。
  • 加权:对检索到的文档进行加权,以突出与查询更相关的部分。

检索到的文档通常包含了与输入查询相关的背景知识和信息,这些信息可以帮助生成器更准确地理解查询的含义,从而生成更合适的答案。通过融合检索到的相关文档信息,生成器能够获取到超出其本身训练数据的知识,这使得它能够生成更加具体、详细且与问题紧密相关的答案。例如,如果问题是关于某个特定事件的细节,而这个细节不在模型的原始训练数据中,通过检索到的相关文档,模型就能利用这些新信息来生成答案。融合后的信息为生成器提供了丰富的上下文,从而帮助生成更多与上下文相关的答案。具体作用包括:

  • 增强语义理解:融合后的上下文向量包含了输入查询和相关文档的语义信息,有助于模型更全面地理解问题和相关背景。

  • 减少歧义:在自然语言中,许多词汇和短语可能具有多种含义。通过提供相关的文档内容,模型可以更准确地确定用户的真实意图,减少歧义。

  • 提供事实支持:检索到的文档可能包含回答问题所需的事实性信息。这些信息可以直接用于生成答案,提高答案的准确性和可信度。

  • 丰富生成内容:融合后的上下文信息为模型提供了更多的内容生成选项,使得生成的答案不仅局限于输入查询的直接回答,还可以扩展到相关的主题和细节。

  • 提高生成质量:通过利用检索到的文档内容,模型可以生成更连贯、更自然的答案。这种连贯性是通过模仿人类在回答问题时通常会参考的背景知识来实现的。

  • 适应复杂任务:在面对复杂或开放性问题时,融合后的上下文信息可以帮助模型生成更全面、更深入的答案,而不仅仅是简单的事实陈述。

RAG模型的训练流程

  • 编码器和检索器的预训练:编码器用于将文本转换为向量,检索器则学习如何有效地从数据库中检索信息。这部分通常基于无监督学习方法预先训练。
  • 生成器的预训练:生成器模型如T5、BERT等通常也是先在大量文本数据上进行无监督或有监督的预训练。
  • 联合微调:在检索和生成两个组件初步训练之后,会对整个系统进行微调,即在特定任务上,通过端到端的方式调整检索器和生成器的参数,使它们能够协同工作,更好地生成答案。微调过程中会使用标注好的问题-答案对作为监督信号。

检索器和生成器的联合训练与微调

  • 迭代反馈:生成器产生的回答会与真实答案比较,反馈用于调整检索器的检索策略和生成器的生成策略。
  • 梯度更新:通过反向传播,同时更新检索器的参数(如影响相似度计算的部分)和生成器的参数,以优化整个系统的性能。
  • 强化学习:在某些情况下,可以采用强化学习方法,通过奖励机制来指导检索器和生成器的决策,以最大化生成答案的质量。

RAG模型损失函数如何设计

RAG的损失函数设计旨在衡量生成答案与真实答案之间的差异,常见的做法包括:

  • 交叉熵损失:在微调阶段,如果使用的是分类任务或序列生成任务,可以使用交叉熵损失来衡量预测概率分布与真实标签或序列的差异。
  • MLE(最大似然估计):在生成器的预训练阶段,常用MLE来最大化模型生成正确答案的概率。
  • 联合损失:在联合训练时,可能会设计一个综合损失函数,结合检索的准确性和生成答案的质量,可能包括检索到的文档片段与问题的相关性评分损失,以及生成答案的准确性损失。
  • 20
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
辽B代驾管理系统对代驾订单管理、用户咨询管理、代驾订单评价管理、代驾订单投诉管理、字典管理、论坛管理、公告管理、新闻信息管理、司机管理、用户管理、管理员管理等进行集中化处理。经过前面自己查阅的网络知识,加上自己在学校课堂上学习的知识,决定开发系统选择小程序模式这种高效率的模式完成系统功能开发。这种模式让操作员基于浏览器的方式进行网站访问,采用的主流的Java语言这种面向对象的语言进行辽B代驾管理系统程序的开发,在数据库的选择上面,选择功能强大的Mysql数据库进行数据的存放操作。辽B代驾管理系统的开发让用户查看代驾订单信息变得容易,让管理员高效管理代驾订单信息。 辽B代驾管理系统具有管理员角色,用户角色,这几个操作权限。 辽B代驾管理系统针对管理员设置的功能有:添加并管理各种类型信息,管理用户账户信息,管理代驾订单信息,管理公告信息等内容。 辽B代驾管理系统针对用户设置的功能有:查看并修改个人信息,查看代驾订单信息,查看公告信息等内容。 辽B代驾管理系统针对管理员设置的功能有:添加并管理各种类型信息,管理用户账户信息,管理代驾订单信息,管理公告信息等内容。 辽B代驾管理系统针对用户设置的功能有:查看并修改个人信息,查看代驾订单信息,查看公告信息等内容。 系统登录功能是程序必不可少的功能,在登录页面必填的数据有两项,一项就是账号,另一项数据就是密码,当管理员正确填写并提交这二者数据之后,管理员就可以进入系统后台功能操作区。项目管理页面提供的功能操作有:查看代驾订单,删除代驾订单操作,新增代驾订单操作,修改代驾订单操作。公告信息管理页面提供的功能操作有:新增公告,修改公告,删除公告操作。公告类型管理页面显示所有公告类型,在此页面既可以让管理员添加新的公告信息类型,也能对已有的公告类型信息执行编辑更新,失效的公告类型信息也能让管理员快速删除。新闻管理页面,此页面提供给管理员的功能有:新增新闻,修改新闻,删除新闻。新闻类型管理页面,此页面提供给管理员的功能有:新增新闻类型,修改新闻类型,删除新闻类型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值