位运算/LeetCode 260/LeetCode 136

在这里插入图片描述
题目链接:https://leetcode-cn.com/problems/single-number/

  • TC:O(n),MC:O(1) 如此一来,暴力和利用哈希表(最坏情况是前面n/2都是出现了两次的数,这样所需要开辟的内存空间还是达到了O(n)级别)都不可以了。
  • 题目中有个信息很重要:n-1个数都出现了两次,联系到位运算中的异或:a^a=0,0^a=a,并且a^b^a=(a^a)^b=0^b=b位运算是满足交换律和结合律的,自然题目就解决了,一开始用0去异或每一个数,这样最后异或完的必定是只出现一次的那个数。
  • 当然还有一种方法,那就是直接把每个数的两倍做个累加,然后遍历数组,一个一个减掉,由于有个数只出现了两次,那么sum最后剩的就是那个数。
class Solution {
public:
    int singleNumber(vector<int>& nums) {
        int ans = 0;
    //异或 满足交换律和结合律
    // a^b^a=a^a^b=0^b=b
    // a^a=0 0^b=b
        for(int num:nums){
            ans ^= num;
        }
        return ans;
    }
};

在这里插入图片描述
题目链接:https://leetcode-cn.com/problems/single-number-iii/

  • TC:O(n),MC:O(1) 如此一来,暴力和利用哈希表(最坏情况是前面n/2都是出现了两次的数,这样所需要开辟的内存空间还是达到了O(n)级别)都不可以了。
  • 又是眼熟的题目条件:n-2个数出现过两次,回忆起位运算不停的异或,将所有出现过两次的都消除掉,最后只剩下出现过一次的数进行异或。后面的操作详见代码和注释。
class Solution {
public:
    vector<int> singleNumber(vector<int>& nums) {
        int s = 0;
        for(int num:nums) s ^= num;
        //因为a^a=0 
//只剩那两个不一样的数字 a ^ b
 //a^b!=0 因为只有相同的数字才为0 所以必定有一位为1,这个就是用来区分他俩
//a^b 结果位为1的说明 那些位上 a 和 b 分别为0和1
 //将位中从右往左第一个1(后面都叫做第k位)保留 其余都设置为0
 //-s = ~s + 1 就是反码 + 1
 //~s 取反 之后原来右边的第一个1 --> 0,然后+1,就又变回1了,但是其他位原来都是1-->0 (即使最右边1位是0也成立)
 //这个时候再和原来的s取&,这样也就右边第一个1不变了(因为原来其他位的1取反之后都为0了)
        int diff = (s & (-s));
        vector<int> ans(2,0);
        //初始化为0,因为0^a=a
        for(int num:nums){
        //首先相同的数肯定被分到一组 (因为第k位肯定都是相同的,直接抵消掉(a^a==0))
        //其次 我们这样做主要是为了分离a 和 b
        //a和b中间肯定有一个那第k位是0(不然的话刚开始s第k位也不可能是1),这样和diff与的话就是0了
            if((num & diff) != 0) ans[0] ^= num;
            else ans[1] ^= num;
        }
 //实际上,到最后发现,只要s(a^b)中任意一位1保留,其余都为0即可,这样就足以区分
        return ans;
    }
};
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读