问题描述
ZJM 有一个长度为 n 的数列和一个大小为 k 的窗口, 窗口可以在数列上来回移动. 现在 ZJM 想知道在窗口从左往右滑的时候,每次窗口内数的最大值和最小值分别是多少. 例如:
数列是 [1 3 -1 -3 5 3 6 7], 其中 k 等于 3.
【输入】
输入有两行。第一行两个整数n和k分别表示数列的长度和滑动窗口的大小,1<=k<=n<=1000000。第二行有n个整数表示ZJM的数列。
【输出】
输出有两行。第一行输出滑动窗口在从左到右的每个位置时,滑动窗口中的最小值。第二行是最大值。
【标准输入、输出】
8 3
1 3 -1 -3 5 3 6 7
1 -3 -3 -3 3 3
3 3 5 5 6 7
关于单调队列
单调队列的维护过程与单调栈相似
• 区别在于
• 单调栈只维护一端(栈顶), 而单调队列可以维护两端(队首和队尾)
• 单调栈通常维护 全局 的单调性, 而单调队列通常维护 局部 的单调性
• 单调栈大小没有上限, 而单调队列通常有大小限制
• 由于单调队列 可以队首出队 以及 前面的元素一定比后面的元素先入队 的
性质,使得它可以维护局部的单调性
• 当队首元素不在区间之内则可以出队
时间复杂度与单调栈一致
模拟单调递增队列
问题分析
计算窗口最小值,维护一个递增队列minl,从头遍历每个元素,单调队列中存放的元素下标,对与当前的遍历元素
1、minl[minhead]+m>i则认为队首元素失效,队首元素出队
2、满足单调递增队列的特性,如果a[i]<=a[minl[mintail]]则出队。当i>=m,则开始输出,队首元素即为当前窗口的最小值。
#include<iostream>
#include<stdio.h>
using namespace std;
int maxl[1000010],minl[1000010],a[1000010];//max和min是两个队列
int maxhead=1,maxtail=0,minhead=1,mintail=0;
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
scanf("%d", &a[i]);
}
for(int i=1;i<=n;i++)//求滑动窗口最小值,递增队列
{
if((minhead<=mintail)&&(minl[minhead]+m<=i))//下标检查
minhead++;
while((minhead<=mintail)&&a[i]<=a[minl[mintail]])
mintail--;
minl[++mintail]=i;
if(i>=m)
cout<<a[minl[minhead]]<<" ";
}
cout<<endl;
for(int i=1;i<=n;i++)
{
while((maxhead<=maxtail)&&(maxl[maxhead]+m<=i))//下标检查
maxhead++;
while((maxhead<=maxtail)&&a[i]>=a[maxl[maxtail]])
maxtail--;
maxl[++maxtail]=i;
if(i>=m)
cout<<a[maxl[maxhead]]<<" ";
}
}