奇点的定义
如果 f f f 在 z 0 z_0 z0 的某个邻域内不解析,但在 z 0 z_0 z0 的去心邻域内解析,称 z 0 z_0 z0 是 f f f的一个奇点。
回顾复解析函数的定义
∂
f
∂
z
ˉ
=
0
\frac{\partial f}{\partial \bar{z}}=0
∂zˉ∂f=0, 即
f
=
g
(
x
,
y
)
+
i
h
(
x
,
y
)
f=g(x,y)+\mathbf{i} h(x,y)
f=g(x,y)+ih(x,y), 且
∂
g
∂
x
=
∂
h
∂
y
\frac{\partial g}{\partial x}=\frac{\partial h}{\partial y}
∂x∂g=∂y∂h,
∂
g
∂
y
=
−
∂
h
∂
x
\frac{\partial g}{\partial y}=-\frac{\partial h}{\partial x}
∂y∂g=−∂x∂h
可去奇点
如果 f f f 在 z 0 z_0 z0 处存在极限, 则称为可去奇点。
极点
如果 f f f 在 z 0 z_0 z0 的极限为无穷大,则称该奇点为极点。
一阶极点
如果存在表示 f ( z ) = ϕ ( z ) z − a f(z)=\frac{\phi(z)}{z-a} f(z)=z−aϕ(z) 且 ϕ ( a ) ≠ 0 \phi(a)\neq 0 ϕ(a)=0, 且 ϕ ( z ) \phi(z) ϕ(z) 在 z = a z=a z=a 处解析, 称 z = a z=a z=a 是 f f f 的一阶极点。
m阶极点
如果存在表示 f ( z ) = ϕ ( z ) ( z − a ) m f(z)=\frac{\phi(z)}{(z-a)^m} f(z)=(z−a)mϕ(z) 且 ϕ ( a ) ≠ 0 \phi(a)\neq 0 ϕ(a)=0, 且 ϕ ( z ) \phi(z) ϕ(z) 在 z = a z=a z=a 处解析, 称 z = a z=a z=a 是 f f f 的 m m m 阶极点。
本性奇点
不是奇点与极点的奇点称为本性奇点。 例如 a a a 的某个邻域内去掉任意有限个点仍然是不解析函数, 在 a a a 附近无限震荡, 或者其他复杂行为的函数。
在复变函数理论中,留数的定义如下:
设
f
f
f 是定义在复平面上的一个函数,且在
z
=
a
z = a
z=a 处有一个孤立奇点(即
a
a
a 是
f
f
f 的一个奇点,但在
a
a
a 的某个邻域内,
f
f
f 除了在
a
a
a 点外是解析的。如果
f
f
f 在
z
=
a
z = a
z=a 处有一个一阶极点,那么
f
f
f 在
z
=
a
z = a
z=a 处的留数定义为:
R
e
s
(
f
,
a
)
=
lim
z
→
a
(
z
−
a
)
f
(
z
)
\mathrm{Res}(f, a) = \lim_{z \to a} (z - a)f(z)
Res(f,a)=z→alim(z−a)f(z)
对于更高阶的极点,留数的定义稍微复杂一些。如果
f
f
f) 在
z
=
a
z = a
z=a 处有一个
m
m
m 阶极点即
(
z
−
a
)
m
f
(
z
)
(z - a)^m f(z)
(z−a)mf(z) 在
z
=
a
z = a
z=a处解析且不为零),那么
f
f
f 在
z
=
a
z = a
z=a 处的留数定义为:
Res
(
f
,
a
)
=
1
(
m
−
1
)
!
lim
z
→
a
d
m
−
1
d
z
m
−
1
[
(
z
−
a
)
m
f
(
z
)
]
\text{Res}(f, a) = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left[ (z - a)^m f(z) \right]
Res(f,a)=(m−1)!1z→alimdzm−1dm−1[(z−a)mf(z)]
这里的
d
m
−
1
d
z
m
−
1
\frac{d^{m-1}}{dz^{m-1}}
dzm−1dm−1 表示对
(
z
−
a
)
m
f
(
z
)
(z - a)^m f(z)
(z−a)mf(z) 进行
m
−
1
m-1
m−1 次求导。
留数定理
留数定理:设
f
f
f 是在复平面上除了一些孤立奇点外解析的函数,
C
C
C 是一条包围这些奇点的正向简单闭合曲线,那么
∮
C
f
(
z
)
d
z
=
2
π
i
∑
k
=
1
n
Res
(
f
,
a
k
)
\oint_C f(z) dz = 2\pi i \sum_{k=1}^n \text{Res}(f, a_k)
∮Cf(z)dz=2πik=1∑nRes(f,ak)
其中
a
1
,
a
2
,
…
,
a
n
a_1, a_2, \ldots, a_n
a1,a2,…,an 是
C
C
C 内部的所有奇点,
Res
(
f
,
a
k
)
\text{Res}(f, a_k)
Res(f,ak) 是
f
f
f 在
a
k
a_k
ak 处的留数。
例
∫ − ∞ + ∞ cos ( x ) x 2 + 1 d x \int_{-\infty}^{+\infty} \frac{\cos(x)}{x^2 + 1} \, dx ∫−∞+∞x2+1cos(x)dx
由于被积函数是偶函数,我们可以简化积分:
∫
−
∞
+
∞
cos
(
x
)
x
2
+
1
d
x
=
2
∫
0
+
∞
cos
(
x
)
x
2
+
1
d
x
\int_{-\infty}^{+\infty} \frac{\cos(x)}{x^2 + 1} \, dx = 2 \int_{0}^{+\infty} \frac{\cos(x)}{x^2 + 1} \, dx
∫−∞+∞x2+1cos(x)dx=2∫0+∞x2+1cos(x)dx
接下来,将
cos
(
x
)
\cos(x)
cos(x) 表达为复指数形式:
cos
(
x
)
=
e
i
x
+
e
−
i
x
2
\cos(x) = \frac{e^{ix} + e^{-ix}}{2}
cos(x)=2eix+e−ix
因此,积分变为:
2
∫
0
+
∞
cos
(
x
)
x
2
+
1
d
x
=
∫
0
+
∞
e
i
x
+
e
−
i
x
x
2
+
1
d
x
2 \int_{0}^{+\infty} \frac{\cos(x)}{x^2 + 1} \, dx = \int_{0}^{+\infty} \frac{e^{ix} + e^{-ix}}{x^2 + 1} \, dx
2∫0+∞x2+1cos(x)dx=∫0+∞x2+1eix+e−ixdx
分别对
e
i
x
e^{ix}
eix 和
e
−
i
x
e^{-ix}
e−ix 进行积分,但由于
e
−
i
x
e^{-ix}
e−ix 的积分会得到一个与
e
i
x
e^{ix}
eix 相同的结果,只需要计算
e
i
x
e^{ix}
eix 的积分并乘以 2。考虑到
e
i
x
e^{ix}
eix 的积分在下半平面是
e
−
i
x
e^{-ix}
e−ix 的积分的共轭,实际上只需要计算
e
i
x
e^{ix}
eix 的积分。
现在,考虑沿上半平面(包括实轴)的闭合路径积分。选择一个半圆路径
C
R
C_R
CR,半径为
R
R
R,在实轴上方,并加上实轴上的线段
[
−
R
,
R
]
[-R, R]
[−R,R]。根据留数定理,闭合路径的积分为
2
π
i
2\pi i
2πi 乘以位于上半平面的极点的留数之和。
在
z
=
i
z = i
z=i 处有一个一阶极点,因此需要计算:
Res
(
e
i
z
z
2
+
1
,
i
)
=
lim
z
→
i
(
z
−
i
)
e
i
z
z
2
+
1
=
lim
z
→
i
e
i
z
z
+
i
=
e
−
1
2
i
\text{Res}\left(\frac{e^{iz}}{z^2 + 1}, i\right) = \lim_{z \to i} (z - i) \frac{e^{iz}}{z^2 + 1} = \lim_{z \to i} \frac{e^{iz}}{z + i} = \frac{e^{-1}}{2i}
Res(z2+1eiz,i)=z→ilim(z−i)z2+1eiz=z→ilimz+ieiz=2ie−1
因此,闭合路径上的积分为:
∮
C
R
e
i
z
z
2
+
1
d
z
=
2
π
i
⋅
e
−
1
2
i
=
π
e
−
1
\oint_{C_R} \frac{e^{iz}}{z^2 + 1} \, dz = 2\pi i \cdot \frac{e^{-1}}{2i} = \pi e^{-1}
∮CRz2+1eizdz=2πi⋅2ie−1=πe−1
当
R
→
∞
R \to \infty
R→∞ 时,半圆路径上的积分趋于零,因此得到:
∫
−
∞
+
∞
e
i
x
x
2
+
1
d
x
=
π
e
−
1
\int_{-\infty}^{+\infty} \frac{e^{ix}}{x^2 + 1} \, dx = \pi e^{-1}
∫−∞+∞x2+1eixdx=πe−1
最后,由于只考虑了
e
i
x
e^{ix}
eix 的积分,需要将结果乘以 2,并取实部来得到原始积分的值。但是,由于
e
i
x
e^{ix}
eix 和
e
−
i
x
e^{-ix}
e−ix 的积分是共轭的,乘以 2 并取实部实际上只是将结果乘以 2,因此原始积分的值为:
∫
−
∞
+
∞
cos
(
x
)
x
2
+
1
d
x
=
π
e
−
1
=
π
e
\int_{-\infty}^{+\infty} \frac{\cos(x)}{x^2 + 1} \, dx = \pi e^{-1} = \frac{\pi}{e}
∫−∞+∞x2+1cos(x)dx=πe−1=eπ
>>>from sympy import *
>>>x=symbols("x")
>>>y=cos(x)/(1+x**2)
>>>integrate(y,(x,-oo,oo))
pi* exp(-1)