中科院:基于LLM的长上下文RAG解决方案

在这里插入图片描述

📖标题:LongRAG: A Dual-Perspective Retrieval-Augmented Generation Paradigm for Long-Context Question Answering
🌐来源:arXiv, 2410.18050

摘要

🔸长上下文问答 (LCQA) 是一项具有挑战性的任务,旨在推理长上下文文档以产生问题的准确答案。现有的 LCQA 长上下文大型语言模型 (LLM) 通常会遇到“中间丢失”问题。检索增强生成 (RAG) 通过提供外部事实证据来缓解这个问题。然而,它的分块策略破坏了全局长上下文信息,其长上下文中的低质量检索阻碍了LLM由于大量噪声而识别有效的事实细节。
🔸为此,我们提出了 LongRAG,这是一种通用、双视角和强大的基于 LLM 的 LCQA RAG 系统范式,以增强 RAG 对复杂长上下文知识(即全局信息和事实细节)的理解。我们将 LongRAG 设计为即插即用范式,便于适应各个领域和 LLM。
🔸在三个基准数据集上的广泛实验表明,LongRAG 显着优于长上下文 LLM(高达 69.4%)、高级 RAG(高达 616%)和 Vanilla RAG(高达 17.25%)。此外,我们进行了定量消融研究和多维分析,突出了系统组件和微调策略的有效性。数据和代码可在 https://github.com/QingFei1/LongRAG 获得。

🛎️文章简介

🔸研究问题:长上下文问答(LCQA)中,现有检索增强生成(RAG)系统在处理长文档时存在的信息不完整和噪声过多问题。
🔸主要贡献:论文提出了LongRAG,一种双视角的检索增强生成范式,实现了一个自动化的微调数据构建管道和多任务训练策略,显著提升了长上下文问答任务的性能。

📝重点思路

🔺相关工作

🔸长上下文LLM:LLM的背景窗口长度受到其训练的限制,最近的研究重点是扩展有限上下文长度,包括使用长上下文的训练方法和基于限制性注意力的非训练方法。
🔸RAG:被认为是提高LLM答题质量的有力技术,缓解了过时的长尾知识、幻觉以及缺乏领域专业知识
🔸RAG特定领域微调:现有的工作包括微调检索相关组件以实现更好的检索结果、微调生成器以获得更个性化的输出,并采用协作微调。

🔺论文方案

🔸双视角检索增强生成范式:LongRAG系统包含四个可插拔组件,分别为混合检索器、LLM增强的信息提取器、CoT引导的过滤器和LLM增强的生成器,这些组件通过多策略方法增强了对复杂长上下文的理解。
🔸生成流程:①使用检索器从长上下文语料库中检索最相关的片段 ②通过长上下文信息提取器提取全局信息,同时通过CoT引导的过滤器识别包含事实细节的片段 ③使用生成器整合全局信息和事实细节,生成最终答案。
🔸训练方式:采用多任务训练策略,使用多长度的长上下文数据进行训练。

🔎分析总结

🔸性能优越性:LongRAG系统在所有数据集上显著优于长上下文LLM和先进的RAG方法。
🔸噪声处理能力:LongRAG通过提取器和过滤器获取更高质量和较少噪声的知识,生成更准确的答案。
🔸鲁棒性和可迁移性:LongRAG在不同微调的LLM上表现出强大的鲁棒性和可迁移性,适用于复杂的多跳长上下文问题。
🔸长上下文LLM的局限:长上下文LLM在处理中间部分的关键事实细节时容易忽略,而LongRAG能够精确且鲁棒地感知这些细节。

💡个人观点

论文的核心是整合全局信息和细节信息,剔除无关噪声和提高全面性。

附录

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值