压缩感知学习笔记(一)——概述

初步接触压缩感知,以此记录学习过程。内容均为自身理解,若有错误,欢迎指正~

一、什么是压缩感知(CS)

概括性描述:如果一个信号在某个变换域稀疏的,便可用一个与变换基不相关的观测矩阵将变换所得的高维信号投影到一个低维空间上,然后通过求解一个优化问题,从少量的投影中以高概率重构原信号

其提出是基于对奈奎斯特采样定理(采样后完整保留原始信号的信息,采样频率必须大于信号中最高频率的2倍)的质疑,大牛陶哲轩等人提出:如果信号是稀疏的,那么它可以由远低于采样定理要求的采样点重建恢复。
其主要分为两个部分:①信号的获取采样②信号的重构恢复
陶等的突破观点便在于采样方式,当涉及采样频率是便意味着做等间距采样,而压缩感知采用随机亚采样,举例如fig.1所示,原信号a在频域上是稀疏的,采用随机亚采样的方式,如图b中上方红点所示,得到c中的结果,最大的几个峰值仍依稀可见,只是一定程度上被干扰覆盖(此时频谱不再是整齐的搬移,而是小部分随机的搬移,导致频率泄露均匀分布再整个频域,但泄露值都会比较小,所以有了恢复的可能)。
Fig.1 CS-采样
之后便是对于原始信号的恢复,以MP(匹配追踪)为例:
(1) 由于原信号的频率非零值在亚采样后的频域中依然保留较大的值,其中较大的两个可以通过设置阈值,检测出来(图a)。
(2) 然后,假设信号只存在这两个非零值(图b),则可以计算出由这两个非零值引起的干扰(图c)。
(3) 用a减去c,即可得到仅由蓝色非零值和由它导致的干扰值(图d),再设置阈值即可检测出它,得到最终复原频域(图e)
(4) 如果原信号频域中有更多的非零值,则可通过迭代将其一一解出。
Fig.2 CS-恢复

二、压缩感知的数学表示

如Fig.3所示,是压缩感知的数学表示示意图。其中压缩感知的数学表示即y=Φx,而由于信号x通常不是稀疏的,但在某个变换域Ψ是稀疏的,即x=Ψs,其中s是K稀疏的,则推出y=ΦΨs=As
下面对涉及符号进行一一说明:
x:大小为Nx1。稀疏度为K的原信号,即待恢复信号。未知。
y:大小为Mx1。观测所得向量,观测值。已知
s:K稀疏的,即x在某个变换域的稀疏表示。
Ψ:大小为NxN。稀疏基矩阵(部分文献称变换矩阵、变换基、稀疏矩阵、稀疏基、正交基字典矩阵等),即某个变换域的完备正交基,可用于表示x等。需要人为选取,一般可知,如频域中傅里叶变换中的正交基矩阵等。
Φ:大小为MxN。观测矩阵(部分文献称测量矩阵,观测基等),对应着亚采样这一过程。作用是将高维信号投影到低维中,是人为选择的,要求与稀疏基矩阵不相干(后面会讲到稀疏基矩阵)。已知
(注:当前已被证明的与任何基均不相干的有高斯分布或贝努力分布抽取的随机矩阵或部分傅里叶矩阵等。但由于此类矩阵存储复制困难,所以提出了确定性和结构化的测量矩阵设计,如循环矩阵等)
A:大小为MxN。传感矩阵(部分文献称测度矩阵、CS信息算子等),A=ΦΨ。
Fig.3 压缩感知的数学表示
因此,压缩感知问题即在已知观测值y和传感矩阵A的基础上,求解欠定方程组y=As得到s,之后逆运算求得原信号x。
对应到开始的例子即fig.4。x就是三个正弦信号叠加在一起的原信号;稀疏矩阵Ψ就是傅里叶变换,将信号变换到频域S;而观测矩阵Φ就对应了我们采用的随机亚采样方式;y就是最终的采样结果。
Fig.4 CS数学表示例子对应

三、完美重构的条件

在前述的过程中,可实现最终信号的恢复,满足了两个前提条件:
①信号在对应的变换域上是稀疏的(频域上只有三个非零值);
②采用随机亚采样机制,因而使频率泄露均匀分布整个频域
以上两点分别对应CS的两个前提条件——稀疏性、非相干性
1、稀疏性
所谓稀疏性,即待恢复的信号需要在某一个变换域具有稀疏性(即在某个变换域只有少量非零值)。在实际中,只要信号近似满足稀疏性,即大部分值趋于零,便可认为该信号是可压缩信号,对其进行亚采样。
2、非相干性
之前提到采用随机亚采样才可实现信号恢复,而陶等大牛给出更为准确的要求,即观测矩阵Φ需要满足约束等距性条件(RIP)(学习压缩感知总会遇到的一个名词。。。相关数学理论较为复杂,之后单开一篇。。。)。其等价条件即观测矩阵Φ与稀疏表示基Ψ不相关。这就是压缩感知的第二个条件,非相干性。

四、当前常用重构算法分类

Fig.5 CS重构算法

五、参考

感谢以下两篇文章:强推~
【1】知乎:形象易懂讲解算法II——压缩感知
【2】压缩感知重构算法之正交匹配追踪(OMP)

  • 7
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: Spark是一个开源的大数据处理框架,它提供了高效的数据处理能力和易用的API,支持多种数据处理模式,包括批处理、流处理和机器学习等。Spark的核心是分布式计算引擎,它可以在集群中运行,利用多台计算机的计算能力来处理大规模数据。Spark的优势在于其高效的内存计算和强大的数据处理能力,可以在处理大规模数据时提供更快的计算速度和更高的性能。Spark的生态系统也非常丰富,包括Spark SQL、Spark Streaming、MLlib和GraphX等组件,可以满足不同的数据处理需求。 ### 回答2: Spark是一种大规模数据处理引擎,可以较快地处理大数据。Spark并不是单独的一种工具,而是一系列的工具和库的整合。它具备高效的内存计算功能,能够在数秒或数分钟内完成数据处理任务。 Spark的核心是分布式计算引擎,通过将数据分成多个部分进行处理,缩短了计算时间。Spark基于RDD(弹性分布式数据集)进行数据处理,RDD是一种可缓存、可重用和容错的数据结构。RDD抽象了数据分布和分区,提供了简单的API。 Spark的架构包括四个组件:Driver、Cluster manager、Worker、和 Executor。其中Driver是Spark应用程序的主程序,Cluster manager通过Master节点来管理各个Worker节点,Worker节点包含了整个Spark集群的计算资源,Executor执行计算任务。 Spark支持多种编程语言,包括Scala、Java、Python和R。其中Scala是Spark的主要语言,因为它能够将Spark的API最大程度地利用。 除了分布式计算引擎外,Spark还提供了多种库和工具,包括Spark SQL、Spark Streaming、MLlib和GraphX。Spark SQL是一种用于结构化数据处理的库,能够使用SQL语句进行数据查询;Spark Streaming可以实时处理数据流,包括文本和图像等;MLlib是实现了多种机器学习算法的库,包括分类、回归、聚类和协同过滤;GraphX可以用于图计算和图分析领域。 总之,Spark是一种强大的大数据处理引擎,能够通过分布式计算架构实现快速的数据处理。它提供了多种语言支持和众多的库和工具,方便用户处理各类数据。 ### 回答3: Spark是一款开源的、分布式的大数据处理框架,它的出现将大数据处理的速度提升到了一个全新的水平。Spark的特点在于它的内存计算引擎,这使得Spark的运行速度比传统的MapReduce处理速度要快很多,同时也比传统的Hadoop更加灵活。 Spark可以用于处理各种大数据应用场景,包括批处理、交互式查询、实时流处理等等。同时,Spark的生态系统非常丰富,有众多的开源库和工具可以使用,例如:Spark SQL、Spark Streaming、GraphX、MLlib等等。 Spark的运行环境需要一个集群,因为Spark是分布式的,它可以通过在集群中多个节点上并行执行任务来提升处理速度,而且Spark支持多种集群管理和资源调度工具,例如:Apache Mesos、Hadoop YARN、Spark自带的资源调度程序等等。 Spark的编程接口非常灵活,可以使用Scala、Java、Python等多种编程语言来编写Spark程序。无论是使用哪种编程语言,Spark都提供了相应的API和工具,例如:Spark SQL、Spark Streaming等。 总之,Spark是一个非常强大的大数据处理框架,它的出现是对传统的Hadoop框架的一种补充和升级,不仅可以处理海量的数据,而且可以提供更快速的数据处理速度和更强大的数据处理能力。因此,Spark已经成为现代大数据处理和机器学习领域中非常重要的工具之一。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值