数据仓库/BI
文章平均质量分 88
NA
Dear Slim.
NO PAIN NO GAIN
展开
-
数据仓库工具箱The Data Warehouse Toolkit 阅读笔记 (三:零售业务)
第三章目录前言一、维度模型构建的4个步骤二、零售业务案例研究1.2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。一、维度模型构建的4个步骤1. 选择业务过程通常用于表示某个业务执行的活动,也需要某个操作型系统作为支撑。如果把注意力放在业务过程,而不是放在功能化的部门上,可以更方便的获得一致的企业信息。2. 声明粒度每一行表示的是什么。一定要注意得声明粒度原创 2021-11-23 14:30:57 · 1488 阅读 · 0 评论 -
数据仓库工具箱The Data Warehouse Toolkit 阅读笔记 (四:缓慢变化维度SCD)
第一遍废话少说,过去的东西记得多少我是十分有数的,但是不能因为无法开始而止步不前。和朋友讨论了一下梳理了一个边复习边刷题的重要程度目录表,先每个类easy/medium高频题刷个10题再说。p.s.括号里面是总题数。Array (941)String (468)Linked List (58)...原创 2021-10-21 14:24:09 · 1094 阅读 · 0 评论 -
数据仓库工具箱The Data Warehouse Toolkit 阅读笔记 (二:Kimball维度建模技术)
这一章的笔记基本按照原书展开的框架来走,删节的不多。概述会对Kimball进行过程的展开、讨论,并给一些非常经典的用例作为理解的切入点。1. 维度模型设计维度模型设计一定不能脱离业务需求来设计,需要很强的协作来完成。在维度模型设计期间主要涉及4个主要的步骤:选择业务过程业务过程事件简历或获取性能度量,并转换为事实表中的事实。过程定义了特定设计目标以及对粒度维度事实的定义。每个业务过程对应企业数据仓库总线矩阵的一行。申明粒度粒度用于确定某一事实表中的行表示什么。原子粒度是最低级别的力度。.原创 2021-10-07 16:45:55 · 1206 阅读 · 0 评论 -
数据仓库工具箱The Data Warehouse Toolkit 阅读笔记 (一:了解DW/BI)
许久没有更新了,被半年来的阅读量吓了一跳。感谢大家的陪伴,现在已经在新的一个阶段了。我会继续努力给大家带来认真写的东西!概述数据仓库和商业智能系统(DW/BI)是本书讨论的基础。这章会从讨论DW/BI的结构入手,进行了解,是后面讨论的基础。DW/BI的介绍和解释DW/BI系统使用数据,是分析型系统。我们在理解上要把其和操作型系统(主要用于记录保存)区分开,区别的根源应该从业务需求说起:相比于记录和存储为主相对单纯的操作型系统,DW/BI系统的“用户研究分析企业的运转,并对其性能进行评估”。更简单.原创 2021-10-07 07:50:13 · 1340 阅读 · 0 评论