数据仓库工具箱The Data Warehouse Toolkit 阅读笔记 (一:了解DW/BI)

本文是《The Data Warehouse Toolkit》阅读笔记的第一部分,主要介绍了数据仓库和商业智能系统(DW/BI)的基础知识,包括概述、业务需求、维度建模以及Kimball的DW/BI架构。维度建模注重简单性和高效查询,星型模式是其常见形式,而DW/BI架构涉及操作型源系统、ETL过程、展现区和商业智能应用。
摘要由CSDN通过智能技术生成

许久没有更新了,被半年来的阅读量吓了一跳。感谢大家的陪伴,现在已经在新的一个阶段了。我会继续努力给大家带来认真写的东西!

概述

数据仓库和商业智能系统(DW/BI)是本书讨论的基础。这章会从讨论DW/BI的结构入手,进行了解,是后面讨论的基础。

DW/BI的介绍和解释

DW/BI系统使用数据,是分析型系统。我们在理解上要把其和操作型系统(主要用于记录保存)区分开,区别的根源应该从业务需求说起:相比于记录和存储为主相对单纯的操作型系统,DW/BI系统的“用户研究分析企业的运转,并对其性能进行评估”。更简单的说,我们要考虑更多的是存下来的数据怎么用?如何呈现?查询的时候怎么更加高质量高效率?

挑了几个关键词来说DW/BI的业务需求:1)方便存取; 2) 数据整齐一致;3)能够适应变化(数据改动不影响原有的功能和应用)4)快速呈现有效信息;5)正确性; 6)有效控制对组织中机密信息的访问。

要成为一个好的DW/BI工作者,需要两个重点:理解用户和以信息技术为基础高精准分析决策。这个过程需要去分析用户的组成、层次、目标、侧重点等;而在后者中需要选择好的应用、合适的数据源、做好维护与更新、监控分析和改进、不断适应由用户或者外界带来的变化。

1. 维度建模

维度建模是展现分析数据的首选技术,其强

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dear Slim.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值