机器学习与文本中的各种熵

假如一个朋友告诉你外面下雨了,你也许觉得不怎么新奇,因为下雨是很平常的 一件事情,但是如果他告诉你他见到外星人了,那么你就会觉 得很好奇: 真的吗?外星人长什么样?同样两条信息, 一条信息量很小, 一条信息量很大,很有价值。我们可以用熵来度量生活中的各个信息量。

信息熵

那么怎么量化上面所说的这个价值呢?这就需要信息熵, 一个随机变量 X 的信息熵定义如下:
H ( X ) = − ∑ x ϵ X p ( x ) log ⁡ p ( x ) H(X) = -\sum_{x\epsilon X}p(x)\log p(x) H(X)=xϵXp(x)logp(x)

信息越少,事件(变量)的不确定性越大,它的信息熵也就越大,搞 明白该事件所需要的额外信息就越多, 也就是说搞清楚小概 率事件所需要 的额外信息较多,比如说,为什么大多数 人愿意相信专 家 的话,因为专家 在他专注的领域了解的知识(信息量)多 ,所以他对某事件的看法较透彻, 不确定性就越小,那么他所传达出来的信息量就很大, 听众搞明白该事件所需要的额外信息量就很小。总之,记住一句话: 信息熵表示的是不确定性的度量。信息熵越大,不确定性越大。

联合熵与条件熵

联合熵的 定义为:
H ( X , Y ) = − ∑ x ϵ X , y ϵ Y p ( x , y ) log ⁡ p ( x , y ) H(X,Y) = -\sum_{x\epsilon X,y\epsilon Y}p(x,y)\log{p(x,y)} H(X,Y)=xϵX,yϵYp(x,y)logp(x,y)

联合熵描述的是一对随机变量X和 Y的不确定性。

条件熵的定义为:
H ( Y ∣ X ) = − ∑ x ϵ X , y ϵ Y p ( x , y ) log ⁡ p ( y ∣ x ) H(Y|X) = -\sum_{x\epsilon X,y\epsilon Y}p(x,y)\log{p(y|x)} H(YX)=xϵX,yϵYp(x,y)logp(yx)
条件熵衡量的是 : 在一个随机变量 X 己知的情况下,另一个随机变量Y 的不确定性。

相对熵,互信息,交叉熵

相对熵(又叫 KL 距离,信息增益) 的定义如下:

D K L ( p ∣ ∣ q ) = ∑ x ϵ X p ( x ) log ⁡ p ( x ) q ( x ) D_{KL}(p||q) = \sum_{x\epsilon X}p(x)\log{\frac{p(x)}{q(x)}} </

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值