1925 进制转换(模拟)

有一个变进制系统从低位到高位的权值依次是
,,,,,1,3,7,15,31,… 。即第i(i>=0)位的权值是
2^(i+1)−1 。每一位数字是0,1,或者2。现在有一个十进制的数字n,想要把它转换成变进制系统下面的表示。由于有2的存在,这种转换可能会有多种可能,现在规定2只能作为最低非0位出现,这种情况下,表示就唯一了。
比如44可能用15+15+7+7(2200)来表示,但是这样前面那个2就没有作为最低非0位出现,所以不符合要求,正确的转换是10120。
输入
多组测试数据。
第一行有一个整数T(1<=T<=5),表示测试数据的数目。
接下来T行,每行一个整数n(0<=n<=1000000000)。
输出
对于每一个n,输出它的变进制表示。
输入样例
样例输入1
4
1
2
3
4
输出样例
样例输出1
1
2
10
11
不用担心2,直接从最高位找起就行

#include<bits/stdc++.h>
#define ll long long
using namespace std;
int n,flag,tmp,po[35];
int main()
{
    ios::sync_with_stdio(false);
    cin>>n;
    for(int i=1;i<=30;i++)
     po[i]=pow(2,i)-1;
    while(n--)
    {
    	cin>>tmp;
    	if(tmp==0)
    	{
    		cout<<0<<endl;continue;
		}
    	int tip=30;
    	while(po[tip]>tmp) tip--;
    	while(tip)
    	{
    		cout<<tmp/po[tip];
    		tmp%=po[tip];
    		tip--;
		}
		cout<<endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值