题解:取石子游戏(博弈)

题目描述
一天小明和小红在玩取石子游戏,游戏规则是这样的:

(1)本游戏是一个二人游戏;

(2)有一堆石子,共有n个;

(3)两人轮流进行;

(4)每走一步可以取走1~m个石子;

(5)最先取光石子的一方为胜。

如果游戏的双方使用的都是最优策略,请输出哪个人能赢。
输入输入的第一行是一个正整数C(C<=100),表示有C组测试数据。

每组输入两个整数n和m(1<=n,m<=1000),n和m的含义见题目描述。
输出对于每组输入,如果先走的人能赢,请输出“first”,否则请输出“second”。
样例输入
2
23 2
4 3
样例输出
first
second
先手必胜:
当最后变成n=m+1时,不论b拿走多少,a一定赢
所以只要一开始n=k*(m+1)+c(0<c<m+1)
a先取走c个数
接下来b每次取k个数,a只要再取m+1-k,就可以保持n=k*(m+1)的情况
反之,b胜

#include<iostream>
using namespace std;
int main()
{
 int c,n,m;
 cin>>c;
    while(c--)
 {
  cin>>n>>m;
  if(n%(m+1))
   cout<<"first"<<endl;
  else
   cout<<"second"<<endl;
 }
   return 0;
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值