L2-029 特立独行的幸福 (25分)

对一个十进制数的各位数字做一次平方和,称作一次迭代。如果一个十进制数能通过若干次迭代得到 1,就称该数为幸福数。1 是一个幸福数。此外,例如 19 经过 1 次迭代得到 82,2 次迭代后得到 68,3 次迭代后得到 100,最后得到 1。则 19 就是幸福数。显然,在一个幸福数迭代到 1 的过程中经过的数字都是幸福数,它们的幸福是依附于初始数字的。例如 82、68、100 的幸福是依附于 19 的。而一个特立独行的幸福数,是在一个有限的区间内不依附于任何其它数字的;其独立性就是依附于它的的幸福数的个数。如果这个数还是个素数,则其独立性加倍。例如 19 在区间[1, 100] 内就是一个特立独行的幸福数,其独立性为 2×4=8。

另一方面,如果一个大于1的数字经过数次迭代后进入了死循环,那这个数就不幸福。例如 29 迭代得到 85、89、145、42、20、4、16、37、58、89、…… 可见 89 到 58 形成了死循环,所以 29 就不幸福。

本题就要求你编写程序,列出给定区间内的所有特立独行的幸福数和它的独立性。

输入格式:
输入在第一行给出闭区间的两个端点:1<A<B≤10
​4
​​ 。

输出格式:
按递增顺序列出给定闭区间 [A,B] 内的所有特立独行的幸福数和它的独立性。每对数字占一行,数字间以 1 个空格分隔。

如果区间内没有幸福数,则在一行中输出 SAD。

输入样例 1:
10 40
输出样例 1:
19 8
23 6
28 3
31 4
32 3
注意:样例中,10、13 也都是幸福数,但它们分别依附于其他数字(如 23、31 等等),所以不输出。其它数字虽然其实也依附于其它幸福数,但因为那些数字不在给定区间 [10, 40] 内,所以它们在给定区间内是特立独行的幸福数。

输入样例 2:
110 120
输出样例 2:
SAD
坑点:在区间内判断是否特立独行

#include <bits/stdc++.h>
using namespace std;
#define ll long long
int main()
{
    ios::sync_with_stdio(false);
    int a,b,d,e,f,sum,flag,flag1=1,flag2=0,map[10005],m[10005];
    cin>>a>>b;
    for(int i=a;i<=b;i++)
     map[i]=i;
    for(int i=a;i<=b;i++)
    {
    	d=0;e=i;
    	while(e)//求平方和 
    	{
    		d+=(e%10)*(e%10);
    		e/=10;
		}
		map[i]=d;
	}
	for(int i=a;i<=b;i++)
	{
		flag=1;e=i;
		memset(m,0,sizeof(m));
		sum=0;
		while(e)
		{
			d=0;f=e;
			while(f)
			{
				d+=(f%10)*(f%10);
				f/=10;
			}
			sum++;e=d;
			if(m[d]==0) m[d]=1;//判断循环 
			else if(m[d])
			{
				flag=0;break;
			}
			if(d==1) break;
		}
	    if(flag)//判断是否特立独行 
	    {
		 for(int j=a;j<=b;j++)
		 if(map[j]==i)
		 {
		 	flag=0;break;
		 }
	    }
	    flag1=1;
	    if(flag) //判断素数 
	    {
		 for(int j=2;j*j<=i;j++)
		  if(i%j==0)
		  {
		  	flag1=0;break;
		  }
	    }
	    if(flag)
	    {
	    	flag2=1;
	    	cout<<i<<" ";
	    	if(flag1) sum*=2;
	    	cout<<sum<<endl;
		}
    }
    if(!flag2) cout<<"SAD"<<endl;
    return 0;
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 终极编程指南 设计师:CSDN官方博客 返回首页