1.题目描述
请考虑一棵二叉树上所有的叶子,这些叶子的值按从左到右的顺序排列形成一个 叶值序列 。
举个例子,如上图所示,给定一棵叶值序列为 (6, 7, 4, 9, 8) 的树。
如果有两棵二叉树的叶值序列是相同,那么我们就认为它们是 叶相似 的。如果给定的两个根结点分别为 root1 和 root2 的树是叶相似的,则返回 true;否则返回 false 。
2.递归解法
思路
用深度优先算法分别得到两棵树的叶值序列,再进行比较。
代码实现
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean leafSimilar(TreeNode root1, TreeNode root2) {
List leaves1 = new ArrayList<Integer>();
List leaves2 = new ArrayList<Integer>();
getLeaves(root1,leaves1);
getLeaves(root2,leaves2);
return leaves1.equals(leaves2);
}
public void getLeaves(TreeNode root, List leaves){
if(root.left == null && root.right == null){
leaves.add(root.val);
return;
}
if(root.left != null){
getLeaves(root.left, leaves);
}
if(root.right != null){
getLeaves(root.right, leaves);
}
}
}
复杂度
时间复杂度:O(n1+n2),n1、n2是两棵树的节点个数。
空间复杂度:O(n1+n2),空间复杂度主要取决于存储「叶值序列」的空间以及深度优先搜索的过程中需要使用的栈空间。
3.迭代解法
思路
使用栈来模拟递归。
代码实现
class Solution {
public boolean leafSimilar(TreeNode root1, TreeNode root2) {
List leaves1 = new ArrayList<Integer>();
List leaves2 = new ArrayList<Integer>();
getLeaves(root1,leaves1);
getLeaves(root2,leaves2);
return leaves1.equals(leaves2);
}
public void getLeaves(TreeNode root, List leaves){
if(root == null)
return;
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()){
TreeNode node = stack.pop();
if(node.left == null && node.right == null){
leaves.add(node.val);
continue;
}
if(node.left != null){
stack.push(node.left);
}
if(node.right != null){
stack.push(node.right);
}
}
}
}
复杂度
时间复杂度:O(n1+n2)
空间复杂度:O(n1+n2)