reduceByKey 和 groupByKey 的分析与区别

reduceByKey是Spark中用于按键对RDD的值进行聚合的关键操作,它通过指定的聚合函数(如加法)合并相同键的值,减少数据传输和Shuffle开销。groupByKey则将相同键的值分组到一起,返回一个键值对RDD,其中每个键对应一个值的迭代器。reduceByKey在分区内进行局部聚合,更适合大规模数据处理,而groupByKey可能导致较高的内存开销和Shuffle成本。两者在功能和性能上有明显区别,选择适合的聚合操作能优化代码效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

reduceByKey

在这里插入图片描述

源码

在这里插入图片描述

  def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = self.withScope {
    combineByKeyWithClassTag[V]((v: V) => v, func, func, partitioner)
  }

  /**
   * Merge the values for each key using an associative and commutative reduce function. This will
   * also perform the merging locally on each mapper before sending results to a reducer, similarly
   * to a "combiner" in MapReduce. Output will be hash-partitioned with numPartitions partitions.
   */
  def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)] = self.withScope {
    reduceByKey(new HashPartitioner(numPartitions), func)
  }

  /**
   * Merge the values for each key using an associative and commutative reduce function. This will
   * also perform the merging locally on each mapper before sending results to a reducer, similarly
   * to a "combiner" in MapReduce. Output will be hash-partitioned with the existing partitioner/
   * parallelism level.
   */
  def reduceByKey(func: (V, V) => V): RDD[(K, V)] = self.withScope {
    reduceByKey(defaultPartitioner(self), func)
  }

实例演示

package spark.core.rdd.operator.transform

import org.apache.spark.rdd.RDD
import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}

object Spark15_RDD_Operator_Transform {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("Operator")
        val sc = new SparkContext(sparkConf)

        // TODO 算子 - (Key - Value类型)

        val rdd = sc.makeRDD(List(
            ("a", 1), ("a", 2), ("a", 3), ("b", 4)
        ))

        // reduceByKey : 相同的key的数据进行value数据的聚合操作
        // scala语言中一般的聚合操作都是两两聚合,spark基于scala开发的,所以它的聚合也是两两聚合
        // 【1,2,3】
        // 【3,3】
        // 【6】
        // reduceByKey中如果key的数据只有一个,是不会参与运算的。
        val reduceRDD: RDD[(String, Int)] = rdd.reduceByKey( (x:Int, y:Int) => {
            println(s"x = ${x}, y = ${y}")
            x + y
        } )

        reduceRDD.collect().foreach(println)




        sc.stop()

    }
}

总结

reduceByKey是一个RDD的转换操作,用于按键对RDD中的值进行聚合。它将具有相同键的值使用指定的聚合函数进行合并,返回一个新的RDD,其中每个键对应一个聚合结果。

reduceByKey的语法如下:

def reduceByKey(func: (V, V) => V): RDD[(K, V)]

其中,func是一个接受两个相同类型的值并返回一个合并结果的聚合函数。它被应用于具有相同键的所有值。K表示键的类型,V表示值的类型。

使用reduceByKey的示例:

val rdd = sparkContext.parallelize(Seq(("a", 1), ("b", 2), ("a", 3), ("b", 4)))
val reducedRDD = rdd.reduceByKey((x, y) => x + y)
reducedRDD.foreach(println)

输出结果为:

(a, 4)
(b, 6)

在上述示例中,初始RDD rdd 包含了键值对的序列。通过应用reduceByKey操作,使用加法函数将具有相同键的值进行合并。最终得到的reducedRDD 包含了每个键对应的聚合结果。

需要注意的是,reduceByKey操作是按照键进行本地聚合,并且可以利用Spark的并行处理能力。它在进行全局聚合之前先在各个分区内进行本地聚合,从而减少了数据传输和Shuffle操作的开销。聚合函数应该满足结合律,以确保最终结果的准确性。

此外,还有一些其他的聚合操作可以用于键值对的RDD,如groupByKeyaggregateByKeyfoldByKey,每个操作都有不同的特点和适用场景。根据具体的需求,选择合适的聚合操作可以提高代码的效率和性能。

groupByKey

在这里插入图片描述

源码

在这里插入图片描述

  /**
   * Group the values for each key in the RDD into a single sequence. Allows controlling the
   * partitioning of the resulting key-value pair RDD by passing a Partitioner.
   * The ordering of elements within each group is not guaranteed, and may even differ
   * each time the resulting RDD is evaluated.
   *
   * @note This operation may be very expensive. If you are grouping in order to perform an
   * aggregation (such as a sum or average) over each key, using `PairRDDFunctions.aggregateByKey`
   * or `PairRDDFunctions.reduceByKey` will provide much better performance.
   *
   * @note As currently implemented, groupByKey must be able to hold all the key-value pairs for any
   * key in memory. If a key has too many values, it can result in an `OutOfMemoryError`.
   */
  def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])] = self.withScope {
    // groupByKey shouldn't use map side combine because map side combine does not
    // reduce the amount of data shuffled and requires all map side data be inserted
    // into a hash table, leading to more objects in the old gen.
    val createCombiner = (v: V) => CompactBuffer(v)
    val mergeValue = (buf: CompactBuffer[V], v: V) => buf += v
    val mergeCombiners = (c1: CompactBuffer[V], c2: CompactBuffer[V]) => c1 ++= c2
    val bufs = combineByKeyWithClassTag[CompactBuffer[V]](
      createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine = false)
    bufs.asInstanceOf[RDD[(K, Iterable[V])]]
  }

  /**
   * Group the values for each key in the RDD into a single sequence. Hash-partitions the
   * resulting RDD with into `numPartitions` partitions. The ordering of elements within
   * each group is not guaranteed, and may even differ each time the resulting RDD is evaluated.
   *
   * @note This operation may be very expensive. If you are grouping in order to perform an
   * aggregation (such as a sum or average) over each key, using `PairRDDFunctions.aggregateByKey`
   * or `PairRDDFunctions.reduceByKey` will provide much better performance.
   *
   * @note As currently implemented, groupByKey must be able to hold all the key-value pairs for any
   * key in memory. If a key has too many values, it can result in an `OutOfMemoryError`.
   */
  def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])] = self.withScope {
    groupByKey(new HashPartitioner(numPartitions))
  }

实例演示

package spark.core.rdd.operator.transform

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object Spark16_RDD_Operator_Transform {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("Operator")
        val sc = new SparkContext(sparkConf)

        // TODO 算子 - (Key - Value类型)

        val rdd = sc.makeRDD(List(
            ("a", 1), ("a", 2), ("a", 3), ("b", 4)
        ))

        // groupByKey : 将数据源中的数据,相同key的数据分在一个组中,形成一个对偶元组
        //              元组中的第一个元素就是key,
        //              元组中的第二个元素就是相同key的value的集合
        val groupRDD: RDD[(String, Iterable[Int])] = rdd.groupByKey()

        groupRDD.collect().foreach(println)

        val groupRDD1: RDD[(String, Iterable[(String, Int)])] = rdd.groupBy(_._1)




        sc.stop()

    }
}

总结

groupByKey是一个RDD的转换操作,用于按键对RDD中的值进行分组。它将具有相同键的所有值放置在同一个分区,并将它们作为一个键值对序列返回,每个键对应于一个由该键的所有值组成的迭代器。

groupByKey的语法如下:

def groupByKey(): RDD[(K, Iterable[V])]

其中,K表示键的类型,V表示值的类型。

使用groupByKey的示例:

val rdd = sparkContext.parallelize(Seq(("a", 1), ("b", 2), ("a", 3), ("b", 4)))
val groupedRDD = rdd.groupByKey()
groupedRDD.foreach(println)

输出结果为:

(a, CompactBuffer(1, 3))
(b, CompactBuffer(2, 4))

在上述示例中,初始RDD rdd 包含了键值对的序列。通过应用groupByKey操作,将具有相同键的值进行分组,并返回一个新的RDD groupedRDDgroupedRDD中的每个键对应一个迭代器,包含了该键的所有值。

需要注意的是,groupByKey操作会导致Shuffle操作,因为它需要将具有相同键的值放置在同一个分区中。在处理大规模数据时,Shuffle操作可能成为性能瓶颈,因此需要谨慎使用。如果只是需要对具有相同键的值进行聚合操作,通常更推荐使用reduceByKey操作,因为它可以在分区内进行本地聚合,减少Shuffle操作的开销。

此外,groupByKey返回的值是一个键值对的RDD,其中每个键对应于一个迭代器。在对迭代器中的值进行处理时,需要谨慎处理内存使用,特别是当每个键的值很大时。可以使用mapValues等方法进一步处理每个键的值。

reduceByKey 和 groupByKey 的区别

当涉及到键值对RDD的聚合操作时,reduceByKeygroupByKey之间的区别如下所示:

  1. 数据传输和Shuffle操作的开销:

    • reduceByKey:在进行聚合操作之前,reduceByKey会在各个分区内先进行本地聚合,然后再进行全局聚合。它会将具有相同键的值进行合并,并通过并行化地在每个分区内进行本地聚合,从而减少数据传输和Shuffle操作的开销。
    • groupByKeygroupByKey会将具有相同键的所有值都放置在同一个分区中,并将它们作为迭代器返回。这意味着所有具有相同键的数据都会经过Shuffle操作,不进行本地聚合。这可能导致大量的数据传输和高昂的Shuffle开销。
  2. 内存使用和性能:

    • reduceByKey:由于reduceByKey在每个分区内进行本地聚合,因此它可以更有效地利用内存,尤其是当数据集很大时。它通过将每个键的值进行迭代并应用聚合函数,产生一个最终的结果,因此输出的RDD的每个键都对应一个聚合后的值。这可以减少内存占用并提高性能,尤其在处理大规模数据时。
    • groupByKeygroupByKey将具有相同键的所有值放入内存中的迭代器中,并将它们作为一个键值对序列返回。由于它不进行本地聚合,因此可能会占用大量内存。此外,如果每个键的值非常大,将所有值放入内存中可能导致OutOfMemoryError。此外,由于groupByKey返回的值是迭代器,因此需要遍历整个迭代器才能访问每个键的所有值。

3. 结果类型:

  • reduceByKeyreduceByKey的输出是一个具有唯一键和聚合值的键值对RDD,其中每个键对应于一个聚合结果。
  • groupByKeygroupByKey的输出是一个键值对RDD,其中每个键对应于一个由该键的所有值组成的迭代器。因此,对于具有相同键的所有值,可能需要进一步操作才能得到聚合结果。

综上所述,如果目标是对键值对进行聚合操作,并且数据集很大,通常建议使用reduceByKey。它可以在分区内进行本地聚合,减少Shuffle操作的开销和内存使用。而groupByKey适用于需要获取具有相同键的所有值的场景,但要注意它可能占用大量内存并导致性能问题。

4.从 shuffle 的角度:

  • reduceByKey 和 groupByKey 都存在 shuffle 的操作,但是 reduceByKey可以在 shuffle 前对分区内相同 key 的数据进行预聚合(combine)功能,这样会减少落盘的数据量,而 groupByKey只是进行分组,不存在数据量减少的问题,reduceByKey 性能比较高。

5.从功能的角度:

  • reduceByKey 其实包含分组和聚合的功能。GroupByKey 只能分组,不能聚合,所以在分组聚合的场合下,推荐使用 reduceByKey,如果仅仅是分组而不需要聚合。那么还是只能使用 groupByKey
完成以下算子的应用案例: 1. map(func): 这个函数常用于数据转换,例如在处理列表时,你可以对每个元素应用一个操作。比如在Python的Pandas库中,可以对一列数据进行数学运算、字符串处理等。例如: ```python data = [1, 2, 3, 4] squared_data = list(map(lambda x: x**2, data)) # 输出:[1, 4, 9, 16] ``` 2. flatMap(func): 主要在处理扁平化数据结构时使用,如流(Stream)处理中,将每个元素通过func转换为零个或多个新元素。例如在Spark中,过滤并合并文本行到单个单词流: ```python words = sc.textFile("file.txt").flatMap(lambda line: line.split()) ``` 3. groupByKey(): 用于将数据按照键(key)分组,常用于统计分析,如计算每个城市的用户数: ```python user_counts = data.groupByKey().mapValues(len) ``` 4. reduceByKey(func): 合并具有相同键值的数据,通常用于求、平均值等聚合操作: ```python total_sales = sales_data.reduceByKey(lambda a, b: a + b) ``` 5. distinct(): 返回集合中唯一的元素,去除重复项: ```python unique_users = users.distinct() ``` 6. union(), intersection(), subtract(): 分别表示集合的并集、交集差集操作,适合数据去重或比较两个集合的相似度: ```python set_a = {1, 2, 3} set_b = {2, 3, 4} combined = set_a.union(set_b) # 结果:{1, 2, 3, 4} common_elements = set_a.intersection(set_b) # 结果:{2, 3} diff = set_a.subtract(set_b) # 结果:{1} ``` 7. zip(): 把两个或更多的序列按相同索引打包成元组,适合合并数据: ```python names = ['Alice', 'Bob'] ages = [20, 25] pairs = list(zip(names, ages)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值