Codeforces Round #670 (Div. 2)
A. Subset Mex
问题分析:
给你n个数字要求你 分成2组
然后按照 从1开始的自然序列 最先没有出现的数字作为 规则值(mex())
然后求 2组 规则值和 的最大值
要想 和最大,就尽量吧其中一组的mex() 调成最大的
统计–优先组成 第一组,,统计–,然后求出第一组最大的
然后第二组,,,
AC代码:
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<sstream>
#include<algorithm>
using namespace std;
#define ll long long
#define mem(a,b) memset((a),(b),sizeof(a));
const ll inf=0x3f3f3f3f;//1061109567,2*未超int,allinf=mem(a,0x3f,sizeof(a));
const int N=2e5+10;
int a[105],b[105];
int main(){
// #define io
#ifdef io
freopen("in.txt","r",stdin);
#endif
cin.tie(0);
int t;
cin>>t;
while(t--){
int n ;
cin>>n;
memset(a,0,sizeof(a));
for(int i=0;i<n;i++){
int x;
cin>>x;
a[x]++;
}
int q,w;
q=w=0;
for(int i=0;i<101;i++){
if(a[i]){
a[i]--;
}else{
q=i;
break;
}
}
for(int i=0;i<101;i++){
if(a[i]){
a[i]--;
}else{
w=i;
break;
}
}
cout<<q+w<<endl;
}
return 0;
}
B. Maximum Product
问题分析:
给定五个数,求其乘积最大值
之前见过一个蓝桥杯的题是 求k个数字
当时 是 k分奇偶性
1)当k为偶数时候 就是 先把数组排序 然后两头依次扫俩个比较大小
然后标记 反复这个操作,,
2)当K为奇数的 时候 最开始的时候直接取最大的数
因为不管 正数还是 负数 都一定要乘以这个最大的数。。。
然后进行偶数的操作
为啥每次取2个 因为 --得正,最小的2个负数的乘积emmm
具体看代码
AC代码:
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<sstream>
#include<algorithm>
using namespace std;
#define ll long long
#define mem(a,b) memset((a),(b),sizeof(a));
#define lowbit(a) ((a)&-(a))
const ll inf=0x3f3f3f3f;//1061109567,2*未超int,allinf=mem(a,0x3f,sizeof(a));
const int N=2e5+10;
ll a[100005];
ll sum;
int main(){
// #define io
#ifdef io
freopen("in.txt","r",stdin);
#endif
cin.tie(0);
int t;
cin>>t;
while(t--) {
int n;
cin>>n;
for(int i=0;i<n;i++)
{
cin>>a[i];
}
sort(a,a+n);
sum=a[n-1]*a[0]*a[1]*a[2]*a[3];
sum=max(sum,a[n-1]*a[0]*a[1]*a[n-2]*a[n-3]);
sum=max(sum,a[n-1]*a[n-2]*a[n-3]*a[n-4]*a[n-5]);
cout<<sum<<endl;
}
return 0;
}
C. Link Cut Centroids
问题分析:
给定n,个几点 ,以及n-1条边
要求 删除一条边 并增加一条边 最终是重心唯一
其中 重心:树中的某个节点,将其删除后,使得节点最多连通分量的节点数最少
重心的性质:一棵树最多有两个重心,2个的话一定重心相邻
为什么不能有三个重心呢
如果有三个 重心 呢么根据性质只能 成环但是呢就不是树了
现在就是判断 重心的个数,用dfs扫一下 ,当重心为2时
需要处理 假设其中重心为 x,y呢他们子树节点个数一定是n/2
这是 将 y子树的一个子节点 删掉 并加到x上
这样 x的就成为 唯一的 重心
这是 x的 最大连通分量为 n/2+1
而 y的 为n/2-1
AC代码:
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<sstream>
#include<algorithm>
using namespace std;
#define ll long long
#define mem(a,b) memset((a),(b),sizeof(a));
#define lowbit(a) ((a)&-(a))
const ll inf=0x3f3f3f3f;//1061109567,2*未超int,allinf=mem(a,0x3f,sizeof(a));
const int N=1e5+10;
vector<int> v[N];
int n,flag,xx,yy;
int s[N];
int dfs(int x,int y){
s[x]=1;
for(int i=0;i<v[x].size();i++){
if(y!=v[x][i]){
dfs(v[x][i],x);
s[x]+=s[v[x][i]];
}
}
if(s[x]==n/2){
xx=x;
yy=y;
flag=1;
}
return 0;
}
int main(){
// #define io
#ifdef io
freopen("in.txt","r",stdin);
#endif
cin.tie(0);
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
flag=0;
for(int i=0;i<N;i++){
v[i].clear();
s[i]=0;
}
int a,b;
for(int i=1;i<n;i++){
scanf("%d%d",&a,&b);
v[a].push_back(b);
v[b].push_back(a);
}
dfs(1,0);
if(!flag){
cout<<a<<" "<<b<<endl;
cout<<a<<" "<<b<<endl;
}else{
for(int i=0;i<v[yy].size();i++){
if(v[yy][i]!=xx){
cout<<v[yy][i]<<" "<<yy<<endl;
cout<<v[yy][i]<<" "<<xx<<endl;
break;
}
}
}
}
return 0;
}