通过DBeaver连接Phoenix操作hbase

本文详细介绍了如何使用DBeaver这个通用数据库工具连接到HBase并通过Phoenix进行操作,包括安装步骤、配置HBase和Phoenix环境,以及在Windows和Linux环境下建立连接的过程。适合数据分析人员快速上手大数据处理和可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通过DBeaver连接Phoenix操作hbase

前言

本文介绍常用一种通用数据库工具Dbeaver,DBeaver 可通过 JDBC 连接到数据库,可以支持几乎所有的数据库产品,包括:MySQL、PostgreSQL、MariaDB、SQLite、Oracle、Db2、SQL Server、Sybase、MS Access、Teradata、Firebird、Derby 等等。商业版本更是可以支持各种 NoSQL 和大数据平台:MongoDB、InfluxDB、Apache Cassandra、Redis、Apache Hive 等。

本文使用软件版本情况:Dbeaver6.3.0+MySQL8.0.11+Hive2.1.1+Hbase2.2.4+hadoop2.7.3+jdk1.8.0_65,Dbeaver6.3.0和MySQL8.0.11安装在window10,Hive2.1.1+Hbase2.2.4+hadoop2.7.3+jdk1.8.0_65安装在虚拟机Centos7上。连接完成后界面如下所示,通过Dbeaver可以很方便在mysql,hive和hbase上进行数据分析和可视化操作。

在这里插入图片描述

1.Dbeaver安装

dbeaver官网
Dbeaver的安装较简单,可通过网页

https://jingyan.baidu.com/article/0aa223756a2eed88cd0d644a.html

按照教程进行安装。再dbeaver.ini配置文件中加入以下字段,通过本地java路径启动。
可以跳过

在这里插入图片描述

1.Hbase安装步骤
https://blog.csdn.net/muyingmiao/article/details/103002598
2 Phoenix的安装
2.1 Phoenix 的官网
http://phoenix.apache.org/
2.2 Phoenix 安装文件地址
http://www.apache.org/dyn/closer.lua/phoenix/
https://mirrors.tuna.tsinghua.edu.cn/apache/phoenix/

通过DBeaver连接Phoenix

确保hbase服务器的 2181 端口 可以对外访问

在这里插入图片描述

点击编辑驱动设置
访问hbase的地址 获取到 ZooKeeper Base Path /hbase
在这里插入图片描述
在后面加上路径
在这里插入图片描述
然后选择库
把默认的删除 选择自己下载好的 phoenix client jar 包即可
在这里插入图片描述
然后点击测试连接即可
在这里插入图片描述
其他请参考
hbase-env.sh配置

export JAVA_HOME=/wys/jdk1.8.0_311/
export HBASE_MANAGES_ZK=false

hbase-site.xml配置
这里连接的外部的zk

<configuration>

  <property>
    <name>hbase.cluster.distributed</name>
    <value>true</value>
  </property>
  <property>
    <name>hbase.tmp.dir</name>
    <value>./tmp</value>
  </property>
  <property>
    <name>hbase.unsafe.stream.capability.enforce</name>
    <value>false</value>
  </property>

<property>
        <name>hbase.zookeeper.quorum</name>
        <value>127.0.0.1</value>
</property>
<property>
  <name>hbase.zookeeper.property.clientPort</name>
  <value>2181</value>
</property>

<property>
<name>hbase.master.ipc.address</name>
<value>0.0.0.0</value>
</property>
<property>
<name>hbase.regionserver.ipc.address</name>
<value>0.0.0.0</value>
</property>
</configuration>

使用R复现这篇孟德尔随机化(Mendelian Randomization, MR)分析文章中的结果,可以按照以下步骤进行: ### 1. 安装和加载必要的包 首先,你需要安装并加载一些必要的R包,这些包用于处理GWAS数据和执行MR分析。 ```R install.packages("TwoSampleMR") library(TwoSampleMR) ``` ### 2. 下载和准备GWAS数据 你需要从论文中提到的数据源下载GWAS汇总统计数据,并将其准备好用于MR分析。这里以骨密度(BMD)和骨折为例。 #### 2.1 下载GWAS数据 你可以从以下网站下载GWAS数据: - **骨密度(BMD)**:[GEFOS](http://www.gefos.org/) -epidemiology/) - **精神疾病(MDs)**:[GWAS Catalog](https://www.ebi.ac.uk/gwas/downloads/summary-statistics) 假设你已经下载了这些数据并保存为文件。 #### 2.2 准备GWAS数据 将下载的GWAS数据读入R,并进行预处理。 ```R # 读取GWAS数据 bmd_data <- read.table("path/to/bmd_data.txt", header = TRUE) fracture_data <- read.table("path/to/fracture_data.txt", header = TRUE) schizophrenia_data <- read.table("path/to/schizophrenia_data.txt", header = TRUE) # 进行质量控制 bmd_data <- clump_data(bmd_data, p1 = 5e-8, p2 = 5e-8, clump_kb = 10000, clump_r2 = 0.001) fracture_data <- clump_data(fracture_data, p1 = 5e-8, p2 = 5e-8, clump_kb = 10000, clump_r2 = 0.001) schizophrenia_data <- clump_data(schizophrenia_data, p1 = 5e-8, p2 = 5e-8, clump_kb = 10000, clump_r2 = 0.001) ``` ### 3. 执行两样本MR分析 使用`TwoSampleMR`包中的函数来执行MR分析。 ```R # 获取遗传工具变量 exposure_data <- extract_instruments(schizophrenia_data) # 获取结局数据 outcome_bmd <- harmonise_data(exposure_data, bmd_data) outcome_fracture <- harmonise_data(exposure_data, fracture_data) # 执行MR分析 mr_result_bmd <- mr(outcome_bmd, method_list = c("ivw", "mr_egger_regression", "weighted_median")) mr_result_fracture <- mr(outcome_fracture, method_list = c("ivw", "mr_egger_regression", "weighted_median")) # 查看结果 print(mr_result_bmd) print(mr_result_fracture) ``` ### 4. 结果解释 输出的结果会显示不同方法下的MR估计值及其显著性水平。你可以通过查看`mr_result_bmd`和`mr_result_fracture`来解释结果。 ### 5. 敏感性分析 为了验证结果的稳健性,可以进行敏感性分析。 ```R # 检查异质性和多效性 heterogeneity_test <- mr_heterogeneity(outcome_bmd) pleiotropy_test <- mr_pleiotropy Egger(outcome_bmd) # 查看测试结果 print(heterogeneity_test) print(pleiotropy_test) ``` ### 6. 可视化结果 最后,可以使用`forest_plot`函数绘制森林图来可视化结果。 ```R # 绘制森林图 forest_plot(mr_result_bmd, method_list = c("ivw", "mr_egger_regression", "weighted_median")) forest_plot(mr_result_fracture, method_list = c("ivw", "mr_egger_regression", "weighted_median")) ``` ### 总结 以上步骤可以帮助你在R中复现这篇文章中的孟德尔随机化分析。确保你正确地下载和处理了所有所需的GWAS数据,并且在每一步都进行了适当的质量控制和数据校正。如果有任何问题或需要进一步的帮助,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值