机器学习实战(7):线性回归

一、普通线性回归

用最小二乘法求线性回归的系数估计已经是老生常谈了,这里直接看看怎么使用Numpy库中的矩阵方法来实现:
在这里插入图片描述

二、局部加权线性回归

使用普通最小二乘法可能会导致欠拟合,即模型过于照顾方差较大的点,而忽略了对方差较小点的拟合效果,这里可以使用局部加权线性回归: w ^ = ( X ′ W X ) − 1 X ′ W y \hat{w} = (X'WX)^{-1}X'Wy w^=(XWX)1XWy其中 W W W是对角矩阵。局部加权线性回归使用核,使得在估计自变量某个取值对因变量影响时,该自变量取值附近的数据的权重更高。常用的核为高斯核: w ( i , i ) = e x p ⟮ ∣ x ( i ) − x ∣ − 2 k 2 ⟯ w(i,i) = exp\lgroup \frac{|x^{(i)}- x|}{-2k^2} \rgroup w(i,i)=exp2k2x(i)x
在这里插入图片描述
该函数可以对输入空间中的任一点,计算出对应的预测值,且在计算过程中实现了随样本点与待预测点距离的递增,权重以指数级递减。
再创建一个函数,为数据集中的每个点调用函数lwlr,直观判断当k不同时函数的拟合效果:
在这里插入图片描述
一般来说当 k = 1.0 k = 1.0 k=1.0时,得到的结果与最小二乘结果比较接近,有可能造成欠拟合, k k k越小,对样本集的拟合效果越好,当 k k k过小时,容易发生过拟合。

三、shrinkage方法

所谓shrinkage方法就是在最小二乘估计式中引入惩罚项,控制模型的复杂度,从而可以减少不必要的参数。
最常用的方法就是岭回归,相当于在残差平方和式中加入了 L 2 L2 L2范数,回归系数估计式为 w ^ = ( X ′ X + λ I ) − 1 X ′ y \hat{w} = (X'X +\lambda I)^{-1}X'y w^=(XX+λI)1Xy
在这里插入图片描述
上式是默认在 l a m d a = 0.2 lamda = 0.2 lamda=0.2时进行岭回归,接下来编写测试函数,在不同的 l a m d a lamda lamda下分别调用ridgeRegress函数,选择最优的调和系数。
在这里插入图片描述
要定量确定岭回归系数,最好使用交叉验证法:
在这里插入图片描述在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值