ResNet残差网络 pytorch手动实现 训练Cifar10

残差原理

Alt

网络退化(degradation):因为梯度弥散等原因,在不断加神经网络的深度时,模型准确率会先上升然后达到饱和,再持续增加深度时则会导致准确率下降。

残差网络ResNet的出现就是为了解决网络深度变深以后的性能退化问题。

ResNet的灵感来源:假设现有一个比较浅的网络(Shallow Net)已达到了饱和的准确率,这时在它后面再加上几个恒等映射层(Identity mapping 即y=x 输出等于输入),这样就增加了网络的深度,并且起码误差不会增加,即更深的网络不应该带来训练集上误差的上升。

某段神经网络的输入是x 期望输出是H(x) ,即H(x)是期望的复杂潜在映射,学习这样的模型,训练难度会比较大。
回想前面的假设,如果已经学习到较饱和的准确率(或者当发现下层的误差变大时),那么接下来的学习目标就转变为恒等映射的学习,也就是使输入x近似于输出H(x) ,以保持在后面的层次中不会造成精度下降。

通过“跳跃连接”(skip)的方式 直接把输入x传到输出作为初始结果,输出结果为 H(x)=F(x)+x。当 F(x)=0 时,那么 H(x)=x,也就是上面所提到的恒等映射。于是,ResNet相当于将学

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ResNet(Residual Network)是由Microsoft Research团队提出的一种深度残差网络结构,通过引入残差连接(residual connection)来解决深度神经网络中梯度消失和梯度爆炸的问题,提高了网络的训练效率和性能。 基于ResNet残差神经网络模型训练的步骤如下: 1. 数据预处理:对训练数据进行数据增强处理,包括图像随机裁剪、水平/垂直翻转、随机旋转等,以增加数据的多样性和丰富性。 2. 构建ResNet模型:按照ResNet的网络结构,搭建深度残差网络模型。可以使用现有的深度学习框架(如TensorFlow、PyTorch等)来实现模型构建。 3. 设置超参数:包括学习率、批量大小、训练轮数等。可以通过交叉验证等方法来调整超参数。 4. 训练模型:使用训练数据对模型进行训练。在训练过程中,可以使用优化算法(如SGD、Adam等)来更新模型权重,以最小化损失函数。 5. 模型评估:使用测试数据对训练好的模型进行评估,计算模型的准确率、精度、召回率等指标,以评估模型性能。 6. 模型优化:根据评估结果,对模型进行优化,可以调整网络结构、重新设置超参数等。 7. 模型应用:将训练好的模型应用到新的数据上进行预测,可以用于图像分类、目标检测、人脸识别等领域。 总的来说,基于ResNet残差神经网络模型的训练过程需要经过数据预处理、模型构建、超参数设置、模型训练、模型评估、模型优化和模型应用等步骤,需要结合实际问题进行具体设计和调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值